PHOTOLYSIS *The driver for photo-oxidation*

Sasha Madronich & Alma Hodzic National Center for Atmospheric Research Boulder, Colorado USA

6 February 2017

Atmospheric Oxygen

Thermodynamic Equilibrium

observations

Some Important Photolysis Reactions

 $O_2 + hv (\lambda < 240 \text{ nm}) \rightarrow O + O$ source of O_3 in stratosphere $O_3 + hv (\lambda < 340 \text{ nm}) \rightarrow O_2 + O(^1D)$ source of OH in troposphere $NO_2 + hv (\lambda < 420 \text{ nm}) \rightarrow NO + O(^3P)$ source of O_3 in troposphere $CH_2O + hv (\lambda < 330 \text{ nm}) \rightarrow H + HCO$ source of HOx, everywhere $H_2O_2 + hv (\lambda < 360 \text{ nm}) \rightarrow OH + OH$ source of OH in remote atm. HONO + hv (λ < 400 nm) \rightarrow OH + NO source of radicals in urban atm. UV-B and UV-A Wavelength: Range and Resolution for Tropospheric Chemistry sea level, overhead sun, tuv5.2

Quantifying Photolysis Processes

Photolysis frequency (s⁻¹) $J = \int_{\lambda} F(\lambda) \sigma(\lambda) \phi(\lambda) d\lambda$

(other names: photo-dissociation rate coefficient, J-value)

 $J(s^{-1}) = \int_{\lambda} F(\lambda) \sigma(\lambda) \phi(\lambda) d\lambda$

 $F(\lambda)$ = spectral actinic flux, quanta cm⁻² s⁻¹ nm⁻¹ \propto probability of photon near molecule.

 $\sigma(\lambda)$ = absorption cross section, cm² molec⁻¹ \propto probability that photon is absorbed.

 $\phi(\lambda) =$ photodissociation quantum yield, molec quanta⁻¹ \propto probability that absorbed photon causes dissociation.

Measurement of Absorption Cross Section $\sigma(\lambda)$

Easy: measure pressure (n = P/RT), and relative change in light: I/I_o

Absorption cross sections $\sigma(\lambda, T)$

Absorption cross sections of formaldehyde CH₂O at room temperature (results 1990-2003)

Absorption cross sections of nitrogen dioxide NO₂ at 294 K Results from the year 1998 and JPL-2006 recommendation

Measurement of Quantum Yields $\phi(\lambda)$

Difficult: must measure absolute change in n (products) and I (photons absorbed)

Photo-dissociation Quantum Yields $\phi(\lambda, T, P)$

Compilations of Cross Sections & Quantum Yields

http://www.atmosphere.mpg.de/enid/2295

MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules

A Database of Atmospherically Relevant Species, Including Numerical Data and Graphical Representations

Hannelore Keller-Rudek, Geert K. Moortgat Max-Planck-Institut für Chemie, Atmospheric Chemistry Division, Mainz, Germany

http://jpldataeval.jpl.nasa.gov/

Solar Spectrum

Atmospheric Optical Depths, au

defined by Transmission of a vertical beam = exp $(-\tau)$

INTEGRALS OVER ANGULAR INCIDENCE

Watts m⁻²

Watts m⁻² or quanta s⁻¹ cm⁻²

SCATTERING PHASE FUNCTIONS

The Radiative Transfer Equation

NUMERICAL SOLUTIONS TO RADIATIVE TRANSFER EQUATION

• Discrete ordinates

n-streams (n = even), angular distribution exact as $n \rightarrow \infty$ but speed $\propto 1/n^2$

Two-stream family

delta-Eddington, many others very fast but not exact

• Monte Carlo

slow, but ideal for 3D problems

• Others

matrix operator, Feautrier, adding-doubling, successive orders, etc.

Two-stream methods

Multiple atmospheric layers, each assumed to be homogeneous Must specify three optical properties:

> Optical depth, $\Delta \tau$ Single scattering albedo, $\omega_{o} = scatt./(scatt.+abs.)$ Asymmetry factor, g: forward fraction ~ (1+g)/2

For each layer, must specify $\Delta \tau$, ω_0 , g:

1. Vertical optical depth, $\Delta \tau(\lambda, z) = \sigma(\lambda, z) n(z) \Delta z$

for molecules: $\Delta \tau(\lambda, z) \sim 0 - 30$ Rayleigh scatt. $\sim 0.1 - 1.0 \sim \lambda^{-4}$ O₃ absorption $\sim 0 - 30$

for aerosols: 0.01 - 5.0

Mie scatt. $\Delta \tau(\lambda, z) \sim \lambda^{-\alpha}$ ($\alpha = Angstrom \ exponent$)

for clouds: 1-1000

 $\alpha \sim 0$ cirrus ~ 1-5 cumulonimbus ~ > 100

For each layer, must specify $\Delta \tau$, ω_0 , g:

2. Single scattering albedo, $\omega_o(\lambda, z) = \text{scatt./(scatt.+abs.)}$

```
range 0 - 1
limits: pure scattering = 1.0
pure absorption = 0.0
```

```
for molecules, strongly \lambda-dependent, depending on absorber amount, esp. O_3
```

```
for aerosols:
sulfate ~ 0.99
soot, organics ~ 0.8 or less,
not well known but probably higher
at shorter λ, esp. in UV
```

for clouds: typically 0.9999 or larger (vis and UV)

For each layer, must specify $\Delta \tau$, ω_0 , g:

3. Asymmetry factor, $g(\lambda, z) =$ first moment of phase function

```
range -1 to + 1
pure back-scattering = -1
isotropic or Rayleigh = 0
pure forward scattering = +1
```

$$g = \frac{1}{2} \int_{-1}^{+1} P(\Theta) \cos \Theta \, \mathrm{d}(\cos \Theta)$$

strongly dependent on particle size for aerosols:, typically 0.5-0.7 for clouds, typically 0.7-0.9

Mie theory for spherical particles: can compute $\Delta \tau$ *,* ω_o *, g from knowledge of* λ *, particle radius and complex index of refraction*

Mie Scattering Theory

For spherical particles, given:

Complex index of refraction: n = m + ik (composition-dependent)

Size parameter: $\alpha = 2\pi r / \lambda$

Can compute:

Extinction efficiency $Q_{\rm e}(\alpha, n) = x \pi r^2$ Scattering efficiency $Q_{\rm s}(\alpha, n) = x \pi r^2$ Phase function
or asymmetry factor $P(\Theta, \alpha, n)$
 $g(\alpha, n)$

Vertical Profile is Very Sensitive to Single Scattering Albedo

Mexico City suburbs (T1) March 2006

Central panel: Model with observed ssa, and obs.

Upper and lower panels: Sensitivity to ssa

Local Time, hrs

EFFECT OF UNIFORM CLOUDS ON ACTINIC FLUX

340 nm, sza = 0 deg., cloud between 4 and 6 km

Actinic flux, quanta cm⁻² s⁻¹

In liquid spheres, multiply by ~ 1.6

Broken Clouds

Photolysis in WRF-Chem

- Several radiative transfer options:
 - phot_opt = 1 : TUV (140 λ s, delta-Eddington)
 - phot_opt = 2 : Fast-J (17 λ s, 8-str Feautrier)
 - phot_opt = 3 : F-TUV (17 λ s, correction factor, delta-Eddington)

New option in WRF-Chem v3.9:

- \Rightarrow phot_opt = 4: updated TUV (140 λ s, delta-Eddington)
- ⇒ only works with MOZART_MOSAIC_4BIN_KPP, MOZART_MOSAIC_4BIN_AQ_KPP, and MOZCART_KPP chemical options
- Limitations & advantages
 - Cross section and quantum yield data are hard-coded and not up to date in older schemes;
 - \Rightarrow updated database to the latest TUV model (V5.3, Oct. 2016)
 - Difficult to add new reactions (typically available ~ 20)
 - \Rightarrow 109 reactions relevant for tropo & strato chemistry (e.g. halogens)

List of available photolysis reactions in the updated TUV

1	02 -> 0 + 0	(J_o2)	
2	O3 -> O2 + O(1D)	(J_o1d)	
3	O3 -> O2 + O(3P)	(J_o3p)	
4	HO2 -> OH + O		
5	H2O2 -> 2 OH	(J_h2o2)	
6	NO2 -> NO + O(3P)	(J_no2)	
7	NO3 -> NO + O2		
8	NO3 -> NO2 + O(3P)		
9	N2O -> N2 + O(1D)	(J_n2o)	
10	N2O5 -> NO3 + NO + O(3P)		
11	N2O5 -> NO3 + NO2	(J_n2o5b)	
12	HNO2 -> OH + NO		
13	HNO3 -> OH + NO2	(J_hno3)	
14	HNO4 -> HO2 + NO2	(J_hno4)	
15	NO3-(aq) -> NO2(aq) + O-		
16	NO3-(aq) -> NO2-(aq) + O(3P)		
17	CH2O -> H + HCO	(J_ch2or)	
18	CH2O -> H2 + CO	(J_ch2om)	
19	CH3CHO -> CH3 + HCO	(J_ch3cho_a)	
20	CH3CHO -> CH4 + CO	(J_ch3cho_b)	
21	CH3CHO -> CH3CO + H	(J_ch3cho_c)	
22	C2H5CHO -> C2H5 + HCO		
23	CH3OOH -> CH3O + OH		
24	HOCH2OOH -> HOCH2O. + OH (J_pooh)		
25	CH3ONO2 -> CH3O + NO2		
26	CH3(OONO2) -> CH3(OO) + NO2		
27	CH3CH2ONO2 -> CH3CH2O + NO2		
28	C2H5ONO2 -> C2H5O + NO2		
29	n-C3H7ONO2 -> C3H7O + NO2		
30	1-C4H9ONO2 -> 1-C4H9O + NO2		

31	2-C4H9ONO2 -> 2-C4H9O + NO2		
32	CH3CHONO2CH3 -> CH3CHOCH3 + NO2		
33	CH2(OH)CH2(ONO2) -> CH2(OH)CH2(O.) + NO2		
34	CH3COCH2(ONO2) -> CH3COCH2(O.) + N	02	
85	C(CH3)3(ONO2) -> C(CH3)3(O.) + NO2		
86	C(CH3)3(ONO) -> C(CH3)3(O) + NO		
37	CH3CO(OONO2) -> CH3CO(OO) + NO2	(J_pan_a)	
88	CH3CO(OONO2) -> CH3CO(O) + NO3	(J_pan_b)	
39	CH3CH2CO(OONO2) -> CH3CH2CO(OO) +	NO2	
0	CH3CH2CO(OONO2) -> CH3CH2CO(O) + N	103	
1	CH2=CHCHO -> Products		
2	CH2=C(CH3)CHO -> Products	(J_macr)	
3	CH3COCH=CH2 -> Products	(J_mvk)	
4	HOCH2CHO -> CH2OH + HCO	(J_glyald_a)	
15	HOCH2CHO -> CH3OH + CO	(J_glyald_b)	
6	HOCH2CHO -> CH2CHO + OH	(J_glyald_c)	
7	CH3COCH3 -> CH3CO + CH3	(J_ch3coch3)	
8	CH3COCH2CH3 -> CH3CO + CH2CH3	(J_mek)	
9	CH2(OH)COCH3 -> CH3CO + CH2(OH)	(J_hyac_a)	
50	CH2(OH)COCH3 -> CH2(OH)CO + CH3	(J_hyac_b)	
51	CHOCHO -> HCO + HCO	(J_gly_a)	
52	CHOCHO -> H2 + 2CO	(J_gly_b)	
53	CHOCHO -> CH2O + CO	(J_gly_c)	
54	CH3COCHO -> CH3CO + HCO	(J_mgly)	
5	CH3COCOCH3 -> Products		
6	CH3COOH -> CH3 + COOH		
57	CH3CO(OOH) -> Products		
8	CH3COCO(OH) -> Products		
59	(CH3)2NNO -> Products	*in moza	
50	CF2O -> Products		

*in mozart_mosaic_4bin

List of available photolysis reactions in the updated TUV

- C|2 -> C| + C|91 $CIO \rightarrow CI + O(1D)$ 92
- $CIO \rightarrow CI + O(3P)$ 63
- CIOO -> Products 64
- 65 OCIO -> Products
- 66 $COOCI \rightarrow CI + COO$
- 67 $HCI \rightarrow H + CI$

61

62

- 68 $HOCI \rightarrow HO + CI$
- $NOCI \rightarrow NO + CI$ 69
- 70 $CINO2 \rightarrow CI + NO2$
- 71 $CONO \rightarrow CI + NO2$
- 72 $CONO2 \rightarrow CI + NO3$
- 73 $CONO2 \rightarrow CO + NO2$
- 74 CCl4 -> Products
- 75 CH3OCI -> CH3O + CI
- CHCl3 -> Products 76
- 77 CH3Cl -> Products
- 78 CH3CCl3 -> Products
- 79 CCl2O -> Products
- 80 CCIFO -> Products
- CCI3F (CFC-11) -> Products 81
- 82 CCI2F2 (CFC-12) -> Products
- 83 CF2CICFCI2 (CFC-113) -> Products
- CF2CICF2CI (CFC-114) -> Products 84
- CF3CF2CI (CFC-115) -> Products 85
- 86 CHCIF2 (HCFC-22) -> Products
- 87 CF3CHCl2 (HCFC-123) -> Products
- 88 CF3CHFCI (HCFC-124) -> Products
- 89 CH3CFCI2 (HCFC-141b) -> Products
- CH3CF2Cl (HCFC-142b) -> Products 90

- CF3CF2CHCl2 (HCFC-225ca) -> Products
- CF2CICF2CHFCI (HCFC-225cb) -> Products
- 93 $Br2 \rightarrow Br + Br$
- 94 BrO -> Br + O
- 95 HOBr -> OH + Br
- 96 BrNO -> Br + NO
- 97 $BrONO \rightarrow Br + NO2$
- BrONO -> BrO + NO 98
- 99 BrNO2 -> Br + NO2
- 100 BrONO2 -> BrO + NO2
- 101 BrONO2 -> Br + NO3
- 102 BrCl -> Br + Cl
- 103 CH3Br -> Products
- 104 CHBr3 -> Products
- 105 CF2Br2 (Halon-1202) -> Products
- 106 CF2BrCl (Halon-1211) -> Products
- 107 CF3Br (Halon-1301) -> Products
- CF2BrCF2Br (Halon-2402) -> Products 108
- 109 perflur o 1-iodopropane -> products

Additional file in KPP/mechanisms/\$mechanism/ \$mechanism.tuv.jmap

Correspondence j_wrfchem with available j_tuv

Photolysis in WRF-Chem

- Ozone column density above the model top:
 - TUV: specified value above the model top (specified_du=325)
 - fast-J: specified value at the model top for the whole domain
 - f-TUV: MOZART model climatology at the top (input file exo_coldens.nc)
 - New TUV: uses ozone climatology distributed from model top to 50km, and then several options available above 50km
- Cloud optical properties:
 - Recalculated in each photolysis scheme, different from physics (e.g. RRTMG)
 - typically, COD calculated from LWP/IWP and effective drop radius (Slingo 1989, with fixed SSA = 0.9999 and $f_{assym} = 0.85$)
 - Various treatments of Sub-grid cloud overlap
 - Scaled by cloud fraction (fast-J)
 - Max random overlap for f-TUV (expensive)
 - Simplified ($COD_{subgrid} = COD * FCLD^{3/2}$, equivalent to max random overlap)
- Aerosols:

accounted for through the namelist option **aer_ra_feedback = .true.**

Settings for phot_opt = 4 (default in red)

Download the data file <u>TUV.phot.tar</u> from the ACOM website (add data directories DATAE1 and DATAJ1, and wrf_tuv_xsqy.nc file)

- phot_opt = 4, 4
- is_full_tuv = .false. : use wrf_tuv_xsqy.nc table interpolation
- is_full_tuv = .true. : use hard-coded data and formulas (updated)
- du_at_grnd = 300 : default total o3 column density
- has_o3_exo_coldens =.false. : o3 column density above 50 km = 0.
- has_o3_exo_coldens =.true. : o3 column density above 50 km from mozart climatology
- scale_o3_to_grnd_exo_coldens = .true. : total o3 column at ground scaled to climatology
- scale_o3_to_du_at_grnd = .true.
 : scaled to the <u>du_at_grnd</u> value at the ground
- pht_cldfrc_opt = 1 : grid cell cloud fraction is either 0 or 1
- pht_cldfrc_opt = 2 : grid cell cloud fraction varies between 0 and 1
- cld_od_opt = 1 : cloud optical depth is scaled by cloud fraction
- cld_od_opt = 2 : cloud optical depth is scaled by (cloud fraction)**1.5

Comparison with the 2013 SEAC⁴RS flights

Comparison with SEAC⁴RS (14 Aug. 2013)

Time (UTC)