2017 WRF-Chem Tutorial

The team:

Ravan Ahmadov (lead) Ka Yee Wong Li Zhang Megan Bela

Georg Grell (will try to help)

WRF-Chem

Community effort

Largest contributing groups: ESRL, PNNL, NCAR

Other significant contributions from: National and international Universities, CPTEC Brazil, NASA, AFWA, NCSU

WRF-Chem

- Chemistry is online, completely embedded within WRF CI
- Consistent: all transport done by meteorological model
 - Same vertical and horizontal coordinates (no horizontal and vertical interpolation)
 - Same physics parameterization for subgrid scale transport
 - No interpolation in time
- Easy handling (Data management)
- Ideally suited to study feedbacks between chemistry and meteorology
- Ideally suited for air quality forecasting on regional to cloud resolving scales

Why Online?

- Offline modeling introduces errors for air quality applications
 - Error for offline modeling is increasing with increasing horizontal resolution
 - Power spectrum analysis can show the amount of information that is lost in offline runs
- 2-way feedback in-between chemistry and meteorology
 - Process studies relevant for global climate change
 - Ultimately it should lead to improved data assimilation (meteorology) and improved weather forecasts

What is needed for this type of modeling system?

- 1. Advection and diffusion (all done by WRF)
- 2. Sub-grid scale transport (WRF parameterizations, PBL, convection)
- 3. Some processes that are specific for chemical constituents, but need meteorology: emissions (biogenic, fire, sea salt, dust, volcanic, anthropogenic), dry deposition, wet scavenging
- 4. Treatment of chemical reactions, aqueous phase chemistry, gas phase species and aerosols
- 5. "Chemical" radiation routines (photolysis routines) that provide photolysis rates necessary for (4)
- 6. Capability of feedback from chemistry to meteorology (meteorological radiation and microphysics parameterizations, possibly also convective parameterizations)

First time in Tutorial: Chemical Data

Assimilation

• WRF DART

- NCEP's Grid Point Statistical Interpolation (GSI, 3DVAR) assimilation system can be used with surface chemical data as well as with AOD: Significant improvements in forecasts.
- EnKF assimilation system has been used for WRF-Chem
- Work is on-going with hybrid EnKF/GSI system (ESRL and NCAR)
- Work is also ongoing with WRF-Chem adjoint development (project lead by Greg Carmichael)

The 2017 WRF-Chem tutorial: Some additional things to remember

- Community effort with extreme complexity
 - The three main developer groups (ESRL, PNNL, NCAR) may contribute to very different parts of the modeling system, each requiring high levels of expertise
 - These parts are being developed constantly by these groups (their most advanced versions)
 - The community version may lag a bit behind
 - In the future adding new complexity and code into the modeling system may change (see also changes in WRF)

2017 Tutorial

- In addition to our annual tutorial in Boulder we also organize international tutorials
- Because of the complexity of the required various emissions data sets,
 - The tutorials usually do not provide enough time to cover emissions in detail
 - Although we can not provide you the best emissions data, we will freely give you access to any emissions data set and preprocessors that we get our hands on

Some important things to take away

- Check out WRF-Chem references to know who is working on what, what should be cited, and maybe where to get additional help if needed.
- We recommend all the users signing up to a new WRF-Chem discussions email group (forum)
- Also, please send us info on your peer reviewed WRF-Chem publications

Please consider: no support currently exists for preparation of tutorials and documentation. The WRF-Chem help desk is minimally supported

WRF-Chem info on the WEB:

WRF-Chem web-page: https://ruc.noaa.gov/wrf/wrf-chem/

WRF-Chem forum: <u>https://list.woc.noaa.gov/cgi-bin/mailman/listinfo/wrf-chem-discussions/</u> FAQ: https://ruc.noaa.gov/wrf/wrf-chem/FAQ.htm

Publications: <u>https://ruc.noaa.gov/wrf/wrf-chem/References/WRF-Chem.references.htm</u>

For questions contact us at wrfchemhelp.gsd@noaa.gov

Thank you for coming!

Much success, and we hope you will enjoy the tutorial, as well as your time in Boulder!