Photolysis

Sasha Madronich National Center for Atmospheric Research Boulder, Colorado USA

3 August 2015

Photochemistry

Energy input from sunlight, e.g.

 $O_2 + hv (\lambda < 242 \text{ nm}) \rightarrow O + O$

 $O + O_2 \rightarrow O_3$ (ozone formation)

 $O_3 + hv (\lambda < 330 \text{ nm}) \rightarrow O_2 + O^*$

 $O^* + H_2O \rightarrow OH + OH$ (hydroxyl radical formation)

Photon

Some Important Photolysis Reactions

 $O_2 + hv (\lambda < 240 \text{ nm}) \rightarrow O + O$ source of O_3 in stratosphere $O_3 + hv (\lambda < 340 \text{ nm}) \rightarrow O_2 + O(^1D)$ source of OH in troposphere $NO_2 + hv (\lambda < 420 \text{ nm}) \rightarrow NO + O(^3P)$ source of O_3 in troposphere $CH_2O + hv (\lambda < 330 \text{ nm}) \rightarrow H + HCO$ source of HOx, everywhere $H_2O_2 + h\nu (\lambda < 360 \text{ nm}) \rightarrow OH + OH$ source of OH in remote atm. HONO + hv (λ < 400 nm) \rightarrow OH + NO source of radicals in urban atm.

Quantifying Photolysis Processes

Photolysis frequency (s⁻¹) $J = \int_{\lambda} F(\lambda) \sigma(\lambda) \phi(\lambda) d\lambda$

(other names: photo-dissociation rate coefficient, J-value)

 $J(s^{-1}) = \int_{\lambda} F(\lambda) \sigma(\lambda) \phi(\lambda) d\lambda$

 $F(\lambda)$ = spectral actinic flux, quanta cm⁻² s⁻¹ nm⁻¹ \propto probability of photon near molecule.

 $\sigma(\lambda)$ = absorption cross section, cm² molec⁻¹ \propto probability that photon is absorbed.

 $\phi(\lambda)$ = photodissociation quantum yield, molec quanta⁻¹ \propto probability that absorbed photon causes dissociation.

Calculation of J for $CH_2O + h_V \rightarrow CHO + H$

Measurement of Absorption Cross Section $\sigma(\lambda)$

Easy: measure pressure (n = P/RT), and relative change in light: I/I_o

Absorption cross sections $\sigma(\lambda, T)$

Absorption cross sections of formaldehyde CH₂O at room temperature (results 1990-2003)

Absorption cross sections of nitrogen dioxide NO_2 at 294 K Results from the year 1998 and JPL-2006 recommendation

Measurement of Quantum Yields $\phi(\lambda)$

Difficult: must measure absolute change in *n* (products) and *I* (photons absorbed)

Photo-dissociation Quantum Yields $\phi(\lambda, T, P)$

Compilations of Cross Sections & Quantum Yields

http://www.atmosphere.mpg.de/enid/2295

MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules

A Database of Atmospherically Relevant Species, Including Numerical Data and Graphical Representations

Hannelore Keller-Rudek, Geert K. Moortgat Max-Planck-Institut für Chemie, Atmospheric Chemistry Division, Mainz, Germany

http://jpldataeval.jpl.nasa.gov/

Solar Spectrum

INTEGRALS OVER INCIDENT DIRECTIONS

Optical Depth

Absorption and Scattering

• Absorption – inelastic, loss of radiant energy:

 Scattering – elastic, radiant energy is conserved, direction changes:

SCATTERING PHASE FUNCTIONS

Multiple Atmospheric Layers Each Assumed to be Homogeneous

Each layer described by 3 parameters:

Optical depth, $\Delta \tau$ Single scattering albedo, $\omega_o = \text{scatt./(scatt.+abs.)}$ Asymmetry factor, g: forward fraction ~ (1+g)/2

Typical Values

	Optical Depth	Single Scattering Albedo	Asymmetry Factor
Molecular scattering (Rayleigh)	0.5 – 2.0 λ ⁻⁴	1	0
Molecular absorption O_2 , O_3 , NO_2 , SO_2 ,	0 – 30 spectra	0	na
Aerosols	0.01 – 5 $\lambda^{-\alpha}$, α = 0.5 – 2.0 (Angstrom exponent)	0.99 sulfate 0.6 soot	0.6 – 0.8
Clouds	$1 - 1000$ white, $\alpha = 0$	0.9999	0.7 – 0.9

Radiative Transfer Equation

Equivalent coordinates: optical or geometric $d\tau = \sigma n dz$ Scattering from diffuse light (multiple scattering)

NUMERICAL SOLUTIONS TO RADIATIVE TRANSFER EQUATION

• Discrete ordinates

n-streams (n = even), angular distribution exact as $n \rightarrow \infty$ but speed $\propto 1/n^2$

Two-stream family

delta-Eddington, many others very fast but not exact

Monte Carlo

slow, but ideal for 3D problems

• Others

matrix operator, Feautrier, adding-doubling, successive orders, etc.

$J \text{ for } NO_2 \rightarrow NO + O$

Aerosols Can Attenuate Urban Actinic Flux → Slower Photochemistry

Madronich, Shetter, Halls, Lefer, AGU'07

Vertical Profile Is Sensitive to Single Scattering Albedo

Mexico City suburbs (T1) March 2006

Altitude (km)

Central panel: Model with observed ssa, and obs.

Upper and lower panels: Sensitivity to ssa

Palancar et al., 2013

EFFECT OF UNIFORM CLOUDS ON ACTINIC FLUX

340 nm, sza = 0 deg., cloud between 4 and 6 km

Actinic flux, quanta cm⁻² s⁻¹

Broken Clouds

PARTIAL CLOUD COVER enhancements and reductions

Crafword et al., 2003

Photochemistry Inside Liquid Particles

Photolysis in WRF-Chem

• Several radiative transfer options:

TUV (delta-Eddington, 140 λ 's) – major update soon Fast-J (8-str Feautrier, 17 λ 's) Fast-TUV (delta-Eddington, 17 λ 's, correction table) Other? – faster, more accurate

Sub-grid cloud overlap schemes

Max overlap if vertically contiguous, random otherwise Effects of overlap schemes on vertical distribution of actinic flux Need evaluation of WRF-Chem in the presence of clouds

• Aerosols:

Mixing rules for index of refraction Mie scattering integrated over size distributions Different core-shell options

OUTLINE

- role of photolysis
- j vals
- xsects & qys
- radiation
- aerosols
- clouds
- wrf-chem

INSIDE CLOUDS: Photon Path Enhancements

Cumulonimbus, od=400 0.07Without absorption 0.06Probability density With absorption ۵ 0.050.040.03 0.02 0.010.00 1020 30 50 4060 7080 90100Pathlength enhancement

Mayer et al., 1998 Photochemistry in clouds can be stronger than outside clouds

Enhancements Possible with Broken Clouds bimodal distribution

SPECTRALLY INTEGRATED RADIATION

- > Radiometry Signal (W m⁻²) = $\int_{\lambda} E(\lambda) R(\lambda) d\lambda$
- ➢ Biological effects
 Dose rate (W m⁻²) = ∫_λ E(λ) B(λ) dλ
- > Photo-dissociation of atmospheric chemicals Photolysis frequency (s⁻¹) = $\int_{\lambda} F(\lambda) \sigma(\lambda) \phi(\lambda) d\lambda$

Diffuse Skylight vs. Direct Solar Beam (at sea level)

Solid Angle (units = steradians, sr)

Solid Angle = area of patch on unit sphere (R = 1)

e.g.: hemisphere = 2π sr full sphere = 4π sr Sun (seen from Earth) $\approx 7x10^{-5}$ sr

 θ = zenith angle = Angle from vertical axis

 ϕ = azimuth angle = angle in horizontal plane, from a reference direction, usually North

Spectral Radiance, I

Definition of Optical Depth

 $\frac{dI}{dz} = -\sigma n I$ (integral form) $I(z_2) = I(z_1) \exp \left[-\sigma n (z_2 - z_1)\right]$

Beer-Lambert Law: $I(z_2) = I(z_1) \exp \left[-\sigma n (z_2 - z_1)\right]$

If σ and/or *n* depend on *z*, then

$$\tau = \int_{z_1}^{z_2} \sigma(z) n(z) \,\mathrm{d}\, z$$

Optical depth: $\tau = \sigma n (z_2 - z_1)$

Lambertian (isotropic) Reflection (e.g. approximately true for snow)

Limit for overhead sun, A = 1, $\theta = 0^{\circ}$:

 $E^{\uparrow} = E_{\downarrow}$ (conservation of energy), but $F^{\uparrow} = 2F_{\downarrow}$ (not conserved)

Mie Scattering Theory

For spherical particles, given:

Complex index of refraction: n = m + ikSize parameter: $\alpha = 2\pi r / \lambda$

Can compute:

Extinction efficiency $Q_{\rm e}(\alpha, n) \propto \pi r^2$

Scattering efficiency

Phase function or asymmetry factor $P(\Theta, \alpha, n)$ $g(\alpha, n)$

 $Q_{\rm s}(\alpha,n) = {\rm x} \, \pi r^2$

Extinction Efficiency, **Q**_{ext}

EFFECT OF CLOUDS (UNIFORM LAYER)

- Above cloud: high radiation because of reflection
- Below cloud: lower radiation because of attenuation by cloud
- Inside cloud: complicated behavior

 Top half: very high values (for high sun)
 Bottom half: lower values

SIMPLE
2-STREAM
METHOD:
3 Equations
for each layer

$$F_{\downarrow}(k) = F_{\downarrow}(k+1)e^{-\Delta \tau/\cos\theta^{*}} + f\omega_{o}F_{o}(k+1)(1-e^{-\Delta \tau/\cos\theta^{*}}) + f\omega_{o}F_{\downarrow}(k+1)(1-e^{-\Delta \tau/\cos\theta^{*}}) + (1-f)\omega_{o}F_{\uparrow}(k)(1-e^{-\Delta \tau/\cos\theta^{*}}) + (1-f)\omega_{o}F_{\uparrow}(k)(1-e^{-\Delta \tau/\cos\theta^{*}}) + (1-f)\omega_{o}F_{\uparrow}(k)(1-e^{-\Delta \tau/\cos\theta^{*}}) + (1-f)\omega_{o}F_{\downarrow}(k)(1-e^{-\Delta \tau/\cos\theta^{*}}) + f\omega_{o}F_{\downarrow}(k)(1-e^{-\Delta \tau/\cos\theta^{*}}) + f\omega_{o}F_{\downarrow}(k)(1-e^{-$$

at bottom (k = 1): $F \uparrow (1) = A[F_o(1) + F \downarrow (1)]$

solve rt eq in each layer, get boundary values:

surface, overhead sun

