WRF/Chem V3.3: A Quick Review Of How To Set-Up & Run

Steven Peckham

WRF/Chem Model System

WRF Post-External Pre-Processing WRF-ARW Model Processing & Data Source System Visualization Alternative Obs Data VAPOR Ideal Data 2D: Hill, Grav, Squall Line & Seabreeze Standard 3D: Supercell ; LES NCL Obs Data & Baroclinic Waves Global: heldsuarez ARWpost OBSGRID WRF-Var (GrADS / Vis5D) WRF Terrestrial RIP4 Data WPP (GrADS / Real Data ARW MODEL WPS GEMPAK) Initialization MET Gridded Data: NAM, GFS, RUC, NNRP, wrfchembc AGRMET(soil) (optional) Gridded Data: (optional) Biogenic Emissions (optional) Gridded Data: Chemistry Data Gridded Data: Anthropogenic Emissions

WRF-ARW Modeling System Flow Chart

WRF/Chem

- It is assumed that the user of WRF/Chem :
 - is *very familiar* with the WRF model system
 - have run WPS
 - and has made more than one weather simulation using WRFV3
- The chemistry code is now available with WRF V3 from NCAR.
 - Send email to WRF/Chem help (wrfchemhelp.gsd@noaa.gov)
 - www.wrf-model.org/WG11
- Test data is available as well
 - Small domain (40x40x35 grid points, 60 km horiz. spacing)

WRF/Chem

- Compile WRF/Chem code (already done)
 - Set environmental variables
 - Define which model core to build (use ARW for now).
 - setenv WRF EM CORE 1
 - setenv WRF NMM CORE 0
 - Chemistry code is to be included in the WRF model build
 - setenv WRF CHEM 1
 - Kinetic Pre-Processor (KPP) code (later talk by Marc Salzmann)
 setenv WRF_KPP 1 => if KPP is to be included

 - setenv WRF KPP 0 => if KPP is NOT to be included
 - setenv FLEX LIB DIR /usr/lib
 - setenv YACC '/usr/bin/yacc -d'
 - Configure and issue "compile em real" command
 - Save compile output to file
 - Check results for errors and check known problems web page if no wrf.exe

WRF/Chem Emissions

WRF-ARW Modeling System Flow Chart

WRF/Chem Emissions

- Two sources of anthropogenic emissions available:
 - National Emissions Inventory (NEI-2005) for U.S.
 - Run without chemistry first as mean wind profile is needed!
 - RETRO (.5 degree, month) and EDGAR (10 degree, annual)
 - Run Prep_sources_chem (Tutorial exercise 2)
 - Both include programs to map to WRF grid; binary output files
- Can use other external emissions data
 - Start with "raw" emissions data
 - Specify the speciation for the desired chemical mechanism
 - Prepared the 3-D (or 2-D) anthropogenic emissions data set
 - Map data onto your WRF-Chem simulation domain
 - Output data
- Goal: have data in a WRF data file to run with model

WRF/Chem Emissions

- One methodology is available emissions + convert program
 - Reads header information from a WRF input file
 - Reads binary emissions data to a WRF netCDF data file
 - compile emi_conv
- Convert program is very simple. Uses just a few namelist settings.
 - emiss_opt=3 NEI emissions for U.S.A.
 - emiss_opt=5 RETRO/EDGAR global emission
- Chpt. 3 and Appendix B of User's Guide for more information
- Users can create input data files through any other methodology

WRF-ARW Modeling System Flow Chart

- 4 choices for Biogenic emissions
- Option 1: No biogenic emissions (bio_emiss_opt = 0):
 - Provide biogenic emissions through anthropogenic input.
 - No additional input data files.
- Option 2 (bio_emiss_opt = 1): (best default option)
 - Landuse based emissions following Guenther et al (1993, 1994), Simpson et al. (1995). Emissions depends on both temperature and photosynthetic active radiation.
 - No additional input data files.

- Option 3 (bio_emiss_opt = 2):
 - User specified from external data source
 - Biogenic Emissions Inventory System (BEIS) version 3.11 [Vukovich and Pierce, 2002] with land-use obtained from the Biogenic Emissions Landuse Database version 3 (BELD3) [Pierce et al., 1998].
 - Static 2-D surface data provided in input data file and are modified according to the environment
 - Data is read in via auxinput6 when running real.exe
 - auxinput6_inname = 'wrfbiochemi_d01',
 - io_form_auxinput6 = 2,

- Option 4 (bio_emiss_opt = 3): MEGAN
 - Separate program made available by NCAR/ACD
 - Global data with base resolution of $\sim 1 \text{ km}$
 - Leef Area Index, vegetation type, emission factors
 - Steps:
 - Download MEGAN code from NCAR/ACD
 - megan_bio_emiss.tar
 - megan.data.tar.
 - (when uncompressed $\sim 28 \text{ GB}$)

http://acd.ucar.ued/~guenter/MEGAN/MEGAN.html

- Option 4 (bio_emiss_opt = 3): MEGAN
 - Steps:
 - Compile megan_bio_emiss
 - Create wrfbiochemi_d01 data file using:
 - wrfinput,
 - RAW MEGAN data files,
 - settings in megan_bio_emiss.input file
 - View wrfbiochemi_d01 data file to verify data is correct.

http://acd.ucar.ued/~guenter/MEGAN/MEGAN.html

WRF/Chem

Biomass Burning Emissions

- 2 choices for biomass burning emissions
- Option 1: No biomass emissions (biomass_burn_opt = 0):
 - No additional input data files.
- Option 2 (biomass_burn_opt = 1):
 - Use prep_chem_sources program to read WFABBA, or MODIS data
 - Convert binary data to wrffirechemi_d01 input file
 - Data read in through auxinput7 when running real.exe

WRF/Chem Dust Emissions

- 2 choices for dust emissions
- Option 1: No dust emissions (dust_opt = 0):
 - No additional input data files.
- Option 2 (dust_opt = 1):
 - Need to include surface erosion data in WPS
 - Use new GEOGRID table for running geogrid.exe
 - Dust data included in wrfinput file
- Work tutorial exercise 3 for more information.

WRF/Chem

GOCART Background Data

- Includes DMS as well as GOCART
 - From running prep_chem_sources with GOCART included
 - Planned to be moved to WPS
- Run prep_chem_sources program to produce external binary data files
- Convert binary data files to WRF input files
 - chem_opt = 300 or 301 and/or dmsemis_opt=1
- Data read by real.exe through auxinput8
 - File name wrfchemi_gocart_bg_d01

WRF/Chem B.C.s

WRF-ARW Modeling System Flow Chart

- External tools under development to provide global model data as BC and initial conditions
- Test program available: wrfchembc (Rainer Schmitz Univ. of Chile)
 - Available code runs with MPI-MATCH & RAQMS data
 - Adds lateral boundary data for chemical species to wrfbdy_d01
 - User specifies which chemical species to use
 - Need to choose chemical species from global model
 - Need to speciate global model data for WRF/Chem chemistry
 - Requires knowledge from user regarding chemistry (not turn-key)
- wrfinput_d01 not modified
 - Can result in differences near boundaries at start of simulation

• Other groups are exploring other possible ways to generate input/B.C. data for WRF/Chem

- NCAR/ACD has a program available if using MOZART

- MOZBC sets space and time-varying chemical initial (IC) and boundary conditions (BC)
 - global model output (MOZART-4 or CAM-Chem)

MOZBC : http://www.acd.ucar.edu/wrf-chem/download.shtml

MOZART data (2004-2008):

http://www.acd.ucar.edu/wrf-chem/mozart.shtml

• <u>Note</u>: MOZART/CAM-Chem data are interpolated only in space.

 Program will fill the chemical fields in your wrfinput_d<nn> and wrfbdy_d<nn> files with global model output.

To enable chemical IC and BC when running WRF-Chem set in namelist.input:
 have_bcs_chem = .true.

- What if you have different GCM data?
- Methodology is the same
 - Read global model chemistry data
 - Skip over if not a desired chemistry species
 - Determine grid point location on WRF/Chem grid
 - If at boundary, interpolate data to WRF/Chem grid
 - Once completed reading/interpolating global data:
 - Open wrfbdy_d01 data file
 - Write boundary data to wrfbdy_d01

WRF/Chem Simulation

WRF-ARW Modeling System Flow Chart

- Time control namelist options
- A few of the Chemistry namelist options
 More details provided in Chapter 4 of User's Guide

- Time control namelist
 - Chemistry input fields come in through auxiliary input ports
 - Biogenic emissions use auxinput 6 for example

&time_control

. . .

auxinput6_inname auxinput6_interval_m io_form_auxinput6 = 'wrfbiochemi_d<domain>, = 1440, = 2,

Recall: Defining a variable-set for an I/O stream

 Fields are added to a variable-set on an I/O stream at compile-time with Registry

#	Type Sym	Dims	Use	Tlev	Stag	IO I	Dname	Descrip
state	real u	ikjb	dyn_em	n 2	x	i01rhusdf	ייטיי	"X WIND COMPONENT"

IO is a string that specifies if the variable is to be subject to initial, restart, or history I/O. The string may consist of 'h' (subject to history I/O), 'i' (initial dataset), or 'r' (restart dataset). The 'h', 'r', and 'i' specifiers may appear in any order or combination.

The 'h' and 'i' specifiers may be followed by an optional integer string consisting of '0', '1', ..., '9' Zero denotes that the variable is part of the principal input or history I/O stream. The characters '1' through '9' denote one of the auxiliary input or history I/O streams.

WRF/Chem Registry

• Thus, in registry.chem

state	real	-	i+jf	emis_ant	-	-			"A	nthropogenic Emissions" ""
state	real	e_iso	i+jf	emis_ant	: 1	Z	i5r	"E_ISO"		"Isoprene EMISSIONS" "mol km^-2 hr^-1"
state	real	e_so2	i+jf	emis_an	t 1	Z	Z i51	"E_SO2"		"EMISSIONS" "mol km^-2 hr^-1"
state	real	e_no	i+jf	emis_an	t 1	Z	i5r	"E_NO"		"EMISSIONS" "mol km^-2 hr^-1"
#										
state	real	e_bio	ijo	misc	1	Ζ	r	"E_BIO"		"EMISSIONS" "ppm m/min"
state	real	sebio_iso	o ij	misc	1	-	i6r	"sebio_iso"		"Reference biog emiss" "mol km^-2 hr^-1"
state	real	sebio_oli	i ij	misc	1	-	i6r '	'sebio_oli"		"Reference biog emiss" "mol km [^] -2 hr [^] -1"
# additional arrays needed for biomass burning emissions input										

state	real -	i]jf eb	u_in -	-	-	-	"Biomass b	ournung input " '	,,,,
state	real ebu_in_no	i]jf	ebu_in	1	-	i{7}	"ebu_in_no"	"EMISSIONS"	"mol km^-2 hr^-1"
state	real ebu_in_co	i]jf	ebu_in	1	-	i{7}	"ebu_in_co"	"EMISSIONS"	"mol km^-2 hr^-1"

Input for GOCART: Background chemistry, erodible surface emissions map
state real backg_oh ikj misc 1 - i8r "BACKG_OH" "Background OH " "volume mixing ratio"
state real backg h2o2 ikj misc 1 - i8r "BACKG H2O2" "Background H2O2" "volume mixing ratio"

- For the chemistry variables to come in via auxiliary port
 - Registry set for input via auxiliary port

Auxiliary port number	Description
5	Anthropogenic emissions
6	Biogenic emissions
7	Surface biomass burning data
8	GOCART background fields
12	External chemistry fields (wrfout data from previous run)

- For the chemistry variables to come in via auxiliary ports (cont.)
 - Namelist set in time_control

&time_control

auxinput6_inname auxinput7_inname auxinput8_inname auxinput5_interval_m auxinput7_interval_m auxinput8_interval_m io_form_auxinput2 io_form_auxinput5 io_form_auxinput6 io_form_auxinput7 io_form_auxinput8 io_form_auxinput8

= 'wrfbiochemi_d<domain>, = 'wrffirechemi_d<domain>, = 'wrfchemi_gocart_bg_d<domain>, = 60, = 1440, = 1440, = 2, = 2, = 2, = 2, = 2, = 2, = 0.

- Time control namelist options
- A few of the Chemistry namelist options

– More details provided in Chapter 4 of User's Guide

• Chemistry control namelist

Chem_opt	Description
0	No chemistry
1 - 40	RADM2, CBMZ chemical mechanism options
101 - 200	Options covering RADM2, CBMZ, MOZART, SAPRC99, NMHC9 chemical mechanisms using KPP.
300 - 301	GOCART aerosol options
400 - 401	Dust options (volcanic and surface lofted)

emiss_opt	Description
0	no anthropogenic emissions
2	use radm2 anthropogenic emissions
3	use radm2/MADE/SORGAM anthropogenic emissions
4	use CBMZ/MOSAIC anthropogenic emissions
5	GOCART RACM_KPP emissions
6	GOCART simple emissions
7	MOZART emissions .
8	MOZCART (MOZART + GOCART aerosols) emissions
13	SAPRC99 emissions

cu_rad_feedback	Description
.false.	No feedback from the parameterized convection to the atmospheric radiation and the photolysis schemes. (logical)
.true.	Feedback from the parameterized convection to the radiation schemes turned on. (logical)
progn	
0	Turns off prognostic cloud droplet number in the Lin et al. microphysics
1	Prognostic cloud droplet number included in the Lin et al. This effectively turns the Lin et al. scheme into a second-moment microphysical scheme. If set with chemopt=0 a default prescribed aerosol concentration is used.

cldchem_onoff	Description
0	cloud chemistry turned off in the simulation, also see the "chem_opt" parameter
1	cloud chemistry turned on in the simulation, also see the "chem_opt" parameter
wetscav_onoff	
0	wet scavenging turned off in the simulation, also see the "chem_opt" parameter
1	wet scavenging turned on in the simulation, also see the "chem_opt" parameter
-10	

WRF/Chem Chemical Data Input

- No chemical initial analysis derived from observations
 - There are no daily 3-D observations (with the exception of a few special occasions)
 - Default initial state for N. America summer (chem_in_opt = 0)
- Use forecast for initial chemical fields
 - Works well as lower tropospheric air quality mostly depends on emissions
 - real.exe reads in forecast data through auxinput12 (chem_in_opt = 1)

WRF-ARW Modeling System Flow Chart

WRF/Chem Chemical Data Input

- Methodology
 - Set namelist option chem_in_opt = 1
 - Update dates/times of simulation in namelist.input for your forecast
 - Copy or link wrfout file to a "wrf_chem_input" data file
 - Set auxinput12 namelist options
- ln –s \$outdir/wrfout_d01_2007-06-15-12:00:00 wrf_chem_input_d01
 - When you run real.exe
 - A message indicates that model is being initialized with previous forecast

Step 1: run case without chemistry

• Get copy of WRF/Chem code in your home directory

cp -R /wrfhelp/SOURCE_CODE/WRFV3_CHEM/WRFV3/WRFV3 The tutorial code is pre-compiled (skip section 1 in the quick start guide).

- Get WPS met data into your WRFV3/test/em_real directory tar -xf /wrfhelp/DATA/WRF-CHEM_WPS/met_em.d01.2008071412.tar
- Set options in namelist.input
- Run real.exe with the chemistry turned off (quick start guide #2). (Save the wrfinput_d01 data file for use later on.)
- Set the namelist.input options

Step 2: Get emissions for your domain

- Set hourly wind profile for plume rise calculation (wind speed and elevation)
- Set vertical levels for your domain (elevation array zfa)
- Compile and run the emiss_v03.F program (quick start #3)

INTEGER :: iproj = 2 REAL :: rekm = 6371. REAL :: dx = 60.E3 REAL :: dxbigdo = 60.E3 REAL :: xlatc = 40.00 REAL :: xlonc = -115.00 REAL :: clat1 = 40.00 REAL :: clat2 = -999. INTEGER :: inest1 = 0 REAL :: xnesstr = 1.00 REAL :: ynesstr = 1.00 INTEGER :: il = 40 INTEGER :: jl = 40 INTEGER :: istart = 12 INTEGER :: maxhr = 03

Step 2: Get emissions for your domain (cont.)

- Keep the wrfinput file for your meteorology only run
- Set namelist options
 - Auxiliary input stream 5 for anthropogenic emissions
 - auxinput5_interval = 60
 - io_form_auxinput5 = 2
 - chem_opt = 2
 - emiss_opt=3
- Run convert_emiss.exe
 - Normally produces wrfem_00to12Z and wrfem_12to24Z binary data files.
 - Tutorial example will produce only 1 file (wrfem_12to24Z)

- Edit the namelist.input file to your test_em_real directory
 - Watch auxinput5_interval, io_form_auxinput5, chem_opt
- run convert_emiss.exe and verify that your emissions file name
 - wrfchemi_12z_d01
- Edit namelist.input file in WRFV3/test/em_real to set chem_opt, etc.
- run wrf.exe and verify results.

- Step 3: Run real.exe to include chemistry
- If including fixed surface emissions (biogenic, fire, GOCART background, etc.):
 - Set namelist options to include additional inputs
 - Auxinput6 biogenic emissions
 - Auxinput7 biomass burning emissions
 - Auxinput8 GOCART background fields
 - Auxinput12 Include previous run's chemistry fields
- Run real.exe
 - Get wrfinput_d01 and wrfbdy files with chemistry fields
 - Should get messages showing chemistry is in run.

- Step 4: Run wrf.exe to produce wrfout data files
 - Set namelist options to include additional inputs
 - Auxinput5 anthropogenic emissions
 - Turn off namelist options that are excluded
 - Auxinput7 biomass burning emissions
 - Auxinput8 GOCART background fields
 - Auxinput12 Include previous run's chemistry fields
 - Should get messages regarding the reading of
 - Anthropogenic emissions
 - If you do not get these messages, an error is likely

After Running WRF/Chem

- Check the text output
 - Make sure you are getting the messages you expect
 - Look for any warning/error messages
- Check the model output (ncview)
 - Confirm that emissions data is being read into simulation
 - Error in kemit will result in no anthropogenic emissions data
 - Error in chem_opt, io_form_auxinput5? Other namelist options?
- Make plots of simulation results

WRF/Chem Visualization

WRF-ARW Modeling System Flow Chart

WRF/Chem Visualization

- Your favorite netCDF data file viewer to examine results
 - ncview, ncbrowse, etc.
- Other standard WRF visualization tools work with the chemistry variables as well as the meteorology
 - ARWpost (NCL, VIS5D)
 - Grads
 - Etc.

WRF/Chem Exercises

• Now you do it! Several exercises are located on the WRF/ Chem web page (linked to on tutorial web page).

First exercises: Building and using anthropogenic emissions

- 1 NEI emissions
 - USA only, but need to understand methodology)
- 2 Global emissions
 - Includes building GOCART, biomass burning emissions
 - Most likely choice for domains outside USA

WRF/Chem Exercises

• 3 – Dust only simulation

- Use global dust erosion data set
- May2010 dust transport event
- 4 Full interactive physics
 - understand namelist choices
- 5 Edit registry.chem and add a new output variable
- Use quick start guide (Appendix A) and User's Guide (and ask for help)

