MEGAN and WRF-CHEM

Tiffany Duhl, Christine Wiedinmyer, Alex Guenther National Center for Atmospheric Research

> Tanarit Sakulyanontvittya University of Colorado / Environ

Serena Chung Washington State University

Jerome Fast Pacific Northwest National Laboratory

Emissions for Chemical Transport Models

- Point
- Area
- Mobile

 On-road
 Off-road
- Fire
- Biogenic

Biogenic Emissions Modeling: MEGAN

• <u>MEGAN</u>:

Model of Emissions of Gases and Aerosols from Nature

- Guenther et. al., Atmospheric Chemistry and Physics, 2006
 - Other papers forthcoming
- 134 emitted chemical species
 - Isoprene
 - Monoterpenes
 - Oxygenated compounds
 - Sesquiterpenes
 - Nitrogen oxide
- 1 km² resolution

- Input files available at: http://cdp.ucar.edu

Online version of MEGAN in WRF-CHEM currently same as offline version 2.04

MEGAN Framework: Calculation of emissions

$$EM = \varepsilon \bullet \gamma_{CE} \bullet \gamma_{age} \bullet \gamma_{SM} \bullet \rho$$
$$\gamma_{CE} = \gamma_{LAI} \bullet \gamma_{P} \bullet \gamma_{T}$$

EM: Emission ($\mu g m^{-2} hr^{-1}$) ϵ : Emission Factor ($\mu g m^{-2} hr^{-1}$) γ_{CE} : Canopy Factor γ_{age} : Leaf Age Factor γ_{SM} : Soil Moisture Factor ρ : Loss and Production within plant canopy γ_{LAI} : Leaf Area Index Factor γ_{P} : PPFD Emission Activity Factor (light-dependence) γ_{T} : Temperature Response Factor

(Guenther et al., 2006)

Current MEGAN Code in WRF-CHEM $EM = \varepsilon \cdot \gamma_{CE} \cdot \gamma_{age} \cdot \gamma_{SM} \cdot \rho$ $\gamma_{CE} = \gamma_{LAI} \cdot \gamma_{P} \cdot \gamma_{T}$

- The algorithm and data for γ SM and ρ are not yet ready. They are assigned to 1.0
- The light dependent factor is only applied to fractions of emission factors based on biological function of plants.
- Only maps of isoprene emission factors are used
 - All other species are assigned an emission factor by PFT
- No explicit canopy model
 - Xuemei Wang has implemented canopy model in one version

MEGAN Framework: Canopy Factor calculations

Follow equation 14 of Guenther et al. (2006):

$$\gamma_T = \frac{E_{OPT} * C_{T2} * \exp(C_{T1} * x)}{(C_{T2} - C_{T1} * (1 - \exp(C_{T2} * x))}$$

Where

x =

 $E_{OPT} = 1.75 * (\exp(0.08 * (T_{daily} - 297)))$

$$T_{opt} = 313 + (0.6 * (T_{daily} - 297))$$

 $\frac{[(1/T_{opt}) - (1/T_{hr})]}{0.00831}$

 T_{hr} = hourly air temperature (K) T_{daily} = daily average air temperature (K) representative of model simulation period C_{T1} = 80 C_{T2} = 200

$$\gamma_T = \exp[\beta \bullet (T - T_s)]$$

MEGAN Framework: Canopy Factor calculations

 $\gamma_{\mathbf{P}}$ = the dependence of emissions on light This is based on equations 11-13 of Guenther et al. (2006).

Where:

 $\gamma_{\rm P} = 0$ when $a \le 0, a \ge 180$

and

$$v_P = \sin(a) * \left[2.46 * 0.9 * \phi^3 * \left(1 + 0.0005 * (P_{daily} - 400) \right) \right]$$

when

0 < *a* < 180

Where ϕ = above canopy PPFD transmission (non-dimensional) P_{daily} = daily average above canopy PPFD (µmol m⁻² s⁻¹) a = solar angle (degree)

where $\phi = \frac{P_{ac}}{\sin(a) * P_{toa}} \qquad P_{ac} = above \ canopy \ PPFD \ (\mu mol \ m^{-2} \ s^{-1}) \\ P_{toa} = PPFD \ at \ the \ top \ of \ atmosphere \ (\mu mol \ m^{-2} \ s^{-1})$

$$P_{ac} = DSW * (4.66 \frac{\mu mol}{m^2 s}) * 0.5$$

$$P_{toa} = 3000 + 99 * \cos[2 * 3.14 - (DOY - 10) / 365]$$

where DOY = day of year

Emission Factors for Isoprene

Fig. 5. Monthly normalized isoprene emission rates estimated with MEGAN for 2003. Rates are normalized by the emission estimated for standard LAI (= $5 \text{ m}^2 \text{ m}^{-2}$) and leaf age (80% mature leaves). These normalized rates illustrate the variations associated with changes in only LAI and leaf age; i.e. all other model drivers are held constant.

MEGAN Input file

Includes isoprene emission factors, LAI, plant functional type fractions, and climatological temperature and solar radiation for each model grid cell Preprocessed prior to WRF-chem simulation*

Table 1: Input parameters for MEGANv2.0, including class of compound (1-20), base emission factors (mg m⁻² hr⁻¹) for broadleaf trees (EF_{BT}), Needleaf Trees (EF_{NT}), Shrubs (EF_{SHR}), and Crops/Grasses (EF_{CG}). β is the dimensionless parameter used to calculate γ_T for compounds other than isoprene. The light dependent fraction (LDF) is the fraction of the total emissions that should have a light dependency assigned.

ClassName	Class ID	EF _{BT}	EF _{NT}	EF _{SHR}	EF _{GC}	β	Leaf Age Case	LDF
Isoprene	1					0.09	5	1
МВО	2	5	100	8	0.1	0.09	5	1
Myrcene	3	20	75	22	0.3	0.09	2	0.05
Sabinene	4	45	70	50	0.7	0.09	2	0.1
limonene	5	45	100	52	0.7	0.09	2	0.05
carene <3->	6	18	160	25	0.3	0.09	2	0.05
ocimene <trans beta=""></trans>	7	90	60	85	1	0.09	2	0.8
pinene <beta-></beta->	8	90	300	100	1.5	0.09	2	0.1
pinene <alpha-></alpha->	9	180	450	200	2	0.09	2	0.1
farnescene <alpha-></alpha->	10	60	30	50	0.9	0.15	3	0.8
caryophyllene <beta-></beta->	11	60	75	65	1.2	0.15	3	0.8
Methanol	12	400	400	400	400	0.09	4	0
Acetone	13	100	100	100	100	0.11	1	0
Acetaldehyde and ethanol	14	120	120	120	120	0.13	1	0
formic acid, formaldehyde, acetic acid	15	70	70	70	70	0.09	1	0
methane	16	300	300	300	300	0.05	1	0.75
nitrogen gases: NO, NH3, N2O	17	5	5	41	200	0.07	1	0
other monoterpenes	18	87.2	180.4	108.2	4.81	0.09	2	0.1
other sesquiterpenes	19	107.7	125.4	104.4	1.83	0.15	3	0.8
other VC	20	969.2	969.2	969.2	969.2	0.09	1	0.75

Values can be edited in module_data_megan.F

MEGAN INPUT FILE

- MEGAN input file needs to be preprocessed before model simulation
 - Can either use geographic processing software or preprocessor available at http://www.acd.ucar.edu/wrf-chem/download.shtml
- File must include:
 - Model Grid information
 - Normalized Isoprene Emission factor*
 - From NCAR Community Data Portal (EF21.zip)
 - Values from downloaded grid converted from ug/m2/hr to mole/km2/hr
 - Monthly LAI
 - From NCAR Community Data Portal
 - Plant Functional Type (PFT)
 - From NCAR Community Data Portal
 - Average monthly temperature and downward solar radiation

Currently only uses grid-specific isoprene emission factors
User may edit variables in module_data_megan2.F

Monthly Temperature and Solar Radiation

- Princeton University
 - Princeton Global Forcings
 - Jan-1948 Dec-2000 https://dss.ucar.edu/datazone/dsszone/ds314.0/#monthly
- NCEP NARR (<u>NCEP North American Regional Reanalysis</u>) <u>http://www.cdc.noaa.gov/cdc/data.narr.html</u>
- Temperature and Solar Radiation data: <u>http://www.cdc.noaa.gov/PublicData/tables/monthly.html</u>
- For Downward Solar Radiation:

http://gswp2.tkl.iis.u-tokyo.ac.jp/gswp2/free/ddc.html

MEGAN vs. BEIS3.11

BEIS

MEGAN

Isoprene Emission

BEIS3.0 (ISOPRENE mass) July Monthly Average

Max = 4358 g/km2-hr

Total average emission = 7417 tons hr⁻¹

Isoprene Emission

MEGANV2.02 EF-S06 (ISOPRENE mass) July Monthly Average

Max = 10542 g/km2-hr

Total average emission = 12145 tons hr⁻¹

BEIS 3.0

MEGAN

Limited support available from:

Christine Wiedinmyer christin@ucar.edu

Tiffany Duhl <u>duhl@ucar.edu</u>

Thank you!

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Preparing MEGAN Input file

- MEGAN file is space-delimited
- File contains:
 - Grid information (i,j)
 - Isoprene Emission Factor for each grid cell
 - PFT percentage (broadleaf trees, needleleaf trees, shrubs, herbaceous)
 - Monthly LAI
 - Monthly air temperature
 - Monthly downward solar radiation

Preparing MEGAN input file using ArcGIS software:

- Download raster files from http://cdp.ucar.edu
- Create polygon file of model domain/grid
 - Include i,j cell numbers
- Perform zonal statistics on rasters from cdp
 - Use mean value of isoprene EF, PFTs, monthly LAI
- Find monthly-averaged air temperature and downward solar radiation
 Interpret mean of each grid cell for each month
- Combine all information into one file
- Format for input to model

NCAR | CISL CDP Home Applications Support My Account Logout

ections Hierarchy: MEGAN (Model of Emissions of Gases and Aerosols from Nature) > MEGAN Version 2.0 > Input > ESRI_GRID_30sec >

EF

-level access

🄄 adhoc2008...

🙆 chem

😼 2 Firefox 👻 🔀 xterm

You may either download a file by clicking on it (hyperlink in the first column, if available), or add files to your Data Cart to prepare a multi-files request.

My Data Cart: 🕨 Add selected files to Data Cart | 🕨 Empty Data Cart | 🕨 Go to Data Cart .

File	Metadata	Format	Туре	Size	Add to Data Cart	OPeNDAP
EF, zip				180783419	🗖 NCAR DISK	
ef21.zip				726388093	🗖 NCAR DISK	
efmt21.zip				1039497882	🗖 NCAR DISK	

NEW: Select All Files: C NCAR DISK C Deselect All Files

1-3 of 3 datafiles

User: christin | CDP Home | Help Page | Contact Us | 角 My Data Cart | 角 My Data Requests | Privacy Policy | Terms of Use

Portal Software Version 4.4 © UCAR, all rights reserved.

🛛 2 Microso... 🔻 💽 2 Microso... 👻 🍳 Untitled - ... 🛛 😿 3 Microso... 👻 🎯 IDL - D:\D...

2

æ

| 🦉 cdp6.JPG -...

NCAR Community Data Portal, sponsored by 📃

Preparing MEGAN input file

Fields of file:

COL,ROW,EF_ISO2,LAI1,LAI2,LAI3,LAI4,LAI5,LAI6_1,LAI7_1,LAI8,LAI9, LAI10,LAI11,LAI12,pft_bt,pft_nt,pft_shr,pft_gc,T1,T2,T3,T4,T5,T6,T7,T 8,T9,T10,T11,T12,DSW1,DSW2,DSW3,DSW4,DSW5,DSW6,DSW7,D SW8,DSW9,DSW10,DSW11,DSW12

Format:

'(2(I5," "),41(E11.2E2," "))'