Executive Summary

Task 1: Improve Turbulence Guidance From NWP Forecasts From RAP, HRRR, NAM, NAM-Nests And, Eventually, NARRE And HRRRE

- Operational RAPv2 continues to run reliably at NCEP. Some warm and dry bias near the surface was evident in RAPv2 this summer but improvements for it are already in pipeline from GSD.
- Real-time experiments for the 2014 warm-season exercise concluded 31 October, having used the April 2014 version of RAPv3 parent model (Task 1) and experimental HRRRv2 (Task 2 below).
- Further updates to RAPv3/HRRRv2 beyond the April 2014 frozen version tested in retro and parallel cycles now nearly complete. New model and assimilation changes to RAPv3 appear very effective to largely eliminate daytime warm-season warm/dry bias. These include better use of surface observations and physics changes reported under Task 3.
- RAPv3/HRRRv2 implementation at NCEP is planned for summer 2015.
- Development and testing continuing of initial pre-NARRE 8-member ensemble (4-NMMB, 4-ARW); regular real-time cycled runs to start soon.

Task 2: Improve Quality Of Convective Weather Forecasts From RAP, HRRR, NAM, NAM-Nests And, Eventually, NARRE and HRRRE

- Advanced HRRR developed and tested with further upgrade to WRF-ARW version 3.6.1+ model and to a recent trunk version of GSI analysis, which will provide source code for RAPv3 and HRRRv3 to be implemented at NCEP in 2015.
- Improvements to HRRR warm/dry due to code refinements (primarily in planetary boundary layer scheme and land surface model – see Task 3).
- Testing and evaluation of mesonet assimilation for RAP and HRRR and radial velocity assimilation for RAP.
- HRRR code version provided to EMC computer experts for code optimization.

Task 3: Improve Quality Of Icing Weather Forecasts From RAP, HRRR, NAM, NAM-Nests And, Eventually, NARRE And HRRRE

- Summary of physics changes in real-time and retrospective testing for advanced RAPv3/HRRRv2 include those in land-surface model (snow treatment, sub-grid mosaic, wilting point), PBL scheme (shallow cumulus, effective sub-grid clouds), cloud microphysics (aerosol-aware), improved radiation effects of clouds in RRTMG radiation, modified Grell-Freitas deep convection.
- Aerosol-aware microphysics scheme from NCAR (Greg Thompson) within WRFv3.6 is running in a RAP parallel cycle with overall favorable results, but evaluation has identified matters for further attention.
- Final physics configuration for RAPv3 pre-implementation testing at NCEP in 2015 to be decided soon.

Task 4: Develop Convection-ATM-Specific Improvements To Guidance From the HRRR (and later, HRRRE) And, Interact With CoSPA (Or Other) Program Partner Labs And The FAA

- Testing of HRRR with WRFv3.6+ with WRF changes to GSD-developed model physics and assimilation started.
- The real-time frozen ESRL RAPv3/HRRRv2 system ran with gridded field dissemination during the CoSPA season that began on 17 April 2014 and ended 31 October 2014.
- ESRL HRRR “failover” capability to use feed from Zeus instead of Jet during Jet downtime worked effectively for CoSPA and is now discontinued to facilitate accelerated development of the RAP and HRRR.
- ESRL HRRR output format changes for alignment with the NCEP HRRR operational implementation will be coordinated with COSPA program partner labs after 01 November 2014.
- Continued discussion with MIT/LL regarding a capability to provide hourly updated vertically integrated liquid and echo top estimates from the ESRL RAP for oceanic regions outside of the HRRR domain.
• Initial discussion with AvMet to plan a meeting discussion for measuring potential operational ATM benefits gains associated with HRRR forecast enhancements.
• The HRRR was implemented operationally at NCEP on 30 September 2014.

Task 1: Improve Turbulence Guidance From NWP Forecasts From RAP, HRRR, NAM, NAM-Nests And, Eventually, NARRE And HRRRE

Improving turbulence forecast quality involves efforts to improve initial conditions for the RAP and NAM (and HRRR and NAM Nest models) and to improve the models (WRF-Advanced Research WRF (ARW)-RAP and NOAA Environmental Modeling System (NEMS)- Nonhydrostatic Multi-scale Model – B (NMMB)).

Tasks will include:
• Continuing evaluation of RAPv3 toward 2015 implementation at NCEP, incorporating changes developed in 2013 and 2014.
• Development of RAPv4 toward 2016 implementation at ESRL and subsequent implementation at NCEP. (Note, some improvements from RAPv4 will be thoroughly tested in all seasons and included in the RAPv3/HRRRv2 package for NCEP.)
• Collaborating on developing and testing best approaches for use of hybrid/EnKF/3DVAR data assimilation within common GSI coding structure.

ESRL

Regarding the operational NCEP RAP (currently RAPv2)

The RAPv2 continues to run well in NCEP operations, without any model or post-processing issues in Oct 14. A webpage on RAP output grids from NCEP is at http://ruc.noaa.gov/rr/RAP-NCEP-output-grids.html.

RAPv3 model testing and evaluation

The preliminary RAPv3 configuration of 5 April 2014 continued to run reliably in the RAP-primary cycle at GSD. This cycle continued to drive the HRRR-primary running through October at GSD in support of the 2014 warm-season exercise, and will continue to support the HRRR primary, but as of 1 November is no longer constrained to run the spring 2014 version of RAPv3. A summary of the upgrades from RAPv2 going to RAPv3 (and HRRRv2) has been published on the web at http://ruc.noaa.gov/pdf/RAPv3-HRRR-April2014.pdf with a more detailed description available at http://ruc.noaa.gov/pdf/ESRLRAPHRRRchanges2014.pdf. In the near future, this will be updated to reflect new extensions to RAPv3 and HRRRv2 codes (discussed further below and under Task 3) once they are finalized at ESRL (and implemented into ESRL versions of RAP and HRRR) prior to being ported to NCEP for implementation in 2015.

The RAPv3 warm-dry forecast bias noted in the FY14 Q3 report was largely eliminated by extensive model changes made and tested in the July-September quarter, as discussed in the FY14 Q4 report. During October, GSD concentrated on test and evaluation of other likely analysis and model upgrades as we prepared the final code versions for RAPv3 and HRRRv2 for transfer to NCEP (Deliverable 1B). The following summarizes probable key changes to the RAPv3 code from the preliminary RAPv3 configuration of April 2014 that was used to support the HRRR in the 2014 warm-season exercise. Where applicable, many of these changes will be included in HRRRv2 as well.

Assimilation
• GSI new trunk code was introduced and tested and is now working.
• Use of model-derived low-level temperature and moisture directly at 2m (where observations are usually made) for computation of surface observation innovations instead of at the lowest model level or any interpolated value. This includes an improved diagnostic for the 2-m water vapor mixing ratio.
• Revised initialization of hydrometeors in GSI cloud analysis when observed reflectivity < 28 dbZ and surface temperatures are well above freezing in order to better maintain initial areas of light rain during the first few hours of the forecast.
• Improved identification of atmospheric volumes not adequately observed by radar due to beam blockage by terrain. This is intended to improve cycled snow cover in mountainous areas through more widespread reliance on the model background hydrometeors for the 0-1h precipitation that drives the RUC LSM.

Model
• Model: After further evaluation, we have decided to continue use of the NAM SST analysis for the temperature of small lakes rather than the new lake-model option in WRFv3.6 to predict lake temperatures. There is a substantial cold bias in the latter.
NARRE-related activities - toward improved probabilistic aviation forecasts

GSD (led by Isidora Jankov) continues to refine a very promising set of experiments using a preliminary ensemble configuration including both ARW and NMMB models toward the North American Rapid Refresh Ensemble (NARRE). Additional interoperable physics options for both ARW and NMMB are now or will be made available for NARRE testing. Real-time testing of a preliminary NARRE 8-member ensemble (4 NMMB with different initial and lateral boundary conditions and 4 WRF-ARW, the latter with different WRF physics combinations as well) at ~13km resolution is on track to start by 15 November. Looking back to July, GSD personnel involved in NARRE development met at GSD with Jacob Carley of NCEP to exchange ideas and outline future options and directions for NARRE development. This will include integrating the NAMRR (also toward NARRE) now under development at NCEP.

Initializing the NARRE forecast ensemble will most likely use a single regional ensemble data assimilation cycle (allowing improved cloud/radar initialization over current use GFS ensemble-based covariance) to initialize both ARW and NMMB members. Different physics configurations or possibly stochastic versions of key physics parameterizations will be used for different NARRE members. Stan Benjamin and Geoff DiMego have completed a draft report outlining the development, test and evaluation tasks needed over the next year or two to bring NARRE to fruition and how these will be partitioned between GSD and NCEP.

Subtasks

14.5.1.1 Ongoing (NCEP, GSD)
Maintain hourly RAP and HRRR runs and provide grids of SAV and AHP guidance products.

GSD

GSD has continued to monitor real-time-NCEP output from the RAP and the now operational HRRR, the latter having its initial implementation at NCEP at 1400 UTC 30 Sep. HRRR-OPER forecasts can now be inter-compared with ESRL-HRRR and other forecasts

NCEP

The RAP and HRRR ran in production in October with no issues. (Manikin, Keyser)

14.5.1.2 28 July 2014 (NCEP, ESRL & CAPS)
Groups collaborate on developing and testing best approaches for use of hybrid/EnKF/3DVAR and 4d-ens-var within common GSI coding structure.

ESRL

GSD: (Ming Hu) continues to prepare a new GSI/model repository from which MDE research partners (GSD, EMC, CAPS, OU, others) will check out common software for regional ensemble data assimilation development toward NARRE.

NCEP

Discussions were held with ESRL, OU and CAPS on ways to develop, test, & implement advanced data assimilation (e.g. 4D ensemble hybrid) for operational regional models. (Carley, Wu, Parrish)

14.5.1.3 30 Sept 2014 (CAPS, GSD, EMC)
Test and evaluate direct radial velocity and reflectivity data assimilation within the 40-20km/13km dual resolution hybrid system. (Resolution dependent on computing resources)

CAPS

In October, CAPS resumed the work to merge modifications made by Drs. Kefeng Zhu and Yujie Pan to the old hybrid GSI package to the latest hybrid GSI package for RAP and HRRR. The old package with the old test data (20100507-2010517) and with the configurations of 40km-13km dual-resolution had been re-run in May. In October, the latest GSI
package was run with the same configuration with the old test data set. The forecast results and verifications from old and latest packages will be compared in November. Then the new packages will be tested with a new test data set. Through the testing, modifications made by CAPS scientists will be consolidated into the latest GSI package. Work adding direct radar reflectivity assimilation capabilities in GSI hybrid system also continued.

EMC

No activity in October. (Liu, Carley)

14.5.1.4 1 Jan 2015 (ESRL, CAPS)
Test the 40/13 km dual-resolution system with hourly DA cycles including all observation types, including radar reflectivity data via cloud analysis and DDFI.

14.5.1.5 28 Feb 2015 (NCEP, ESRL & NCAR)
Groups collaborate on developing and testing physics schemes between WRF and NEMS' physics layer.

GSD

GSD continued to expand interoperable physics options for NARRE using ARW and NMMB. It also refined preliminary NARRE configuration testing ARW with RAP and NAM-like physics and also with NMMB using NAM physics, and will next expand the NMMB options to include the Thompson MP (microphysics) scheme and RUC land-surface model.

NCEP

Meetings were held with ESRL to discuss the use of HMT data for evaluating microphysics schemes in operational regional models. Several changes were made to the Ferrier-Aligo microphysics to test the forecast sensitivity in response to subtle changes in rime-factor calculations, with the intention to increase the amount of stratiform precipitation and slightly reduce the intensity of convection. Some of the changes had a larger than expected impact, and more development is needed to achieve improved performance. Several 4-km NMMB simulations made with the old shallow convection were found to increase the intensity of reflectivities in the convective region compared to the new shallow convection scheme. Several errors were corrected in the calculation of saturation vapor pressures in the RRTM radiation driver, and the code was also modified to avoid any dependencies on a particular microphysics. Several conceptual errors were fixed in the RRTM driver that parameterizes the effects of unresolved, sub grid condensate when the relative humidity approaches saturation. (Ferrier, Aligo, Jovic)

14.5.1.6 28 Feb 2015 (NCEP)
Complete testing of improved or extended 88D processing and quality control, taking advantage of dual-pol where possible.

NCO parallel tests of the radar reflectivity mosaic code were monitored and evaluated. Composite reflectivities produced before and after data quality control were compared against satellite-derived cloud observations, and (as expected) the quality-controlled radar data had better equitable threat scores. (Liu)

14.5.1.7 15 Mar 2015 (ESRL, CAPS, NCEP)
Complete readying of initial regional ensemble data assimilation capability to initialize real-time parallel RAP version and NAMRR.

GSD

No additional work this month.

NCEP

Initial NAMRR runs were made in order to test the modified cloud analysis in the NAM CONUS nest domain. (Carley, Wu, Rogers, Parrish)

14.5.1.8 28 Mar 2015 (NCEP and ESRL)
Negotiate Data Mining List priorities with NCEP Central Operations and external points of contact associated with the most desirable new sources of observations.
No new items were requested so Data Mining List remained unchanged. Carley (not ObsProc) is handling ingest of CIMSS processed GOES imager data for the upcoming RTMA/URMA upgrade which will include a cloud cover analysis. Once TAC->BUFR work is done, entries for obs from mobile platforms (e.g. FHWA Road Weather Management) will be added. It is noted that MADIS is adding CLARIS quality control and will likely be a source for roadway obs. (Keyser, Whiting, DiMego)

GSD

New agreements with energy companies for use of their proprietary tower and nacelle wind data were drafted in May by GSD and coordinated with NWS. This proprietary wind data is already on the DML.

14.5.1.9 31 March 2015 (NCEP)

Establish a pre-implementation version of the hourly updated NAMRR with a goal to use the common regional ensemble data assimilation.

Accumulated precipitation plots from NAM Rapid Refresh (NAMRR) forecasts were incorporated into the NAMRR workflow, along with other incidental changes and bug fixes. Source codes were converted to big Endian for compliance with operations, and work continued with DTC colleagues on code/script development/exchange. NAMRR simulations from the end of May 2013 also tested calling shallow convection in the 3-km CONUS nest. Results were mixed. (Carley)

Deliverables

All Option A unless noted otherwise.

14.5.1.E1 10 April 2014 (ESRL)

Finalize RAPv3 and HRRRv2 for summer 2014 real-time exercise.

COMPLETE. A summary of the spring 2004 RAPv3 and HRRR v2 configurations has been published on the web at http://ruc.noaa.gov/pdf/ESRLRAPHRRRchanges2014.pdf

14.5.1.E2 31 May 2014 (NCEP)

With approval of NCEP Director, NAMv3.1 upgrade package is implemented at NCEP.

The NAMv3.1 evaluation ended on July 30th, the NCEP director was briefed August 8th and the NAMv3.1 was implemented on August 12th. Issues associated with NAM post failures were tracked back to an issue with the digital filter in the NMMB. A fix will be submitted and implemented if failures occur again or as part of the Q4 FY15 NAM upgrade whichever comes first. (Rogers, Pyle)

14.5.1.E3 30 July 2014 (NCAR/MMM)

Deliver a WRF Users’ Workshop and a WRF tutorial for the user community.

NCAR will put on the next WRF tutorial on 26 January–3 February 2015 at its Foothills Laboratory campus in Boulder. This will cover basic WRF operation and the MET (Model Evaluation Tools) verification package. The announcement has been sent to the community, and registrations are being accepted.

PLANNED EFFORTS: NCAR will organize and conduct a WRF tutorial at NCAR January 26–February 3, 2015.

UPDATES TO SCHEDULE: None.

14.5.1.E4 New date: 15 Jan 2015 (from 20 Oct 2014) (ESRL)

Code for RAPv3 and HRRRv2 finalized for transfer to NCEP/EMC for 2015 implementation.

Progress has been steady with testing having started with WRFv3.6, earlier in the year than GSD has done previously with the annual WRF release. Merger of WRFv3.6+ with RAP / HRRR enhancements was completed in July and the RAP-dev3 cycle is now running WRFv3.6+ with the Thompson-Eidhammer aerosol-aware microphysics option turned on and other physics and assimilation improvements developed by GSD. See Task 3 for more physics details.

14.5.1.E4.1 31 Mar 2015 (ESRL)

Report on wind accuracy from RAP and HRRR by quarter for previous year, strongly related to turbulence guidance.
Figure 1: Upper-level (300-200 hPa) wind forecast RMS vector error vs. raobs for 6h forecasts from RAPv3 (ESRL, in blue), RAPv2 (NCEP, in red), and HRRR (ESRL, green). All scores are from native gridded data, not from isobaric coordinate data and show 30-day averages for forecasts from March through September. Units – m/s.

An initial look at upper-level 6h forecast wind accuracy during 2014 (now updated through September) shows relative wind accuracy between the operational RAP (red), ESRL RAP (blue), and ESRL HRRR (green) as shown in Fig. 1. After the introduction of RAPv3 and HRRRv2 in the ESRL runs in early April, those updated versions are showing clearly improved wind forecast skill over that from the NCEP RAP (red). This also implies that turbulence guidance, heavily dependent on upper-level wind forecast accuracy, has also been improved from this update. Therefore, improved wind information to further improve turbulence forecasts is clearly in the pipeline with RAPv3 and HRRRv2 to be implemented at NCEP in mid-2015.

Details on the RAP-HRRR updates in early April 2014 are described in http://ruc.noaa.gov/pdf/RAPv3-HRRR-April2014.pdf and http://ruc.noaa.gov/pdf/ESRLRAPHRRRchanges2014.pdf. Verification against aircraft observations is also shown in Fig. 2 but only for the ESRL RAP (changing from RAPv2 to RAPv3 in early April). In future months, results from the NCEP RAP and HRRR models will be added to allow comparison for winds vs. aircraft observations.
Figure 2: Upper-level (300-200 hPa) wind forecast RMS vector error vs. aircraft for 6h forecasts from the ESRL experimental RAP (RAPv2 through March 2014, RAPv3 since then. Units – m/s.

14.5.1.E5 31 Oct 2014 (ESRL, CAPS, NCEP)
Complete the testing of the 40-20/13 km dual-resolution hybrid DA system for RAP with 3-hourly cycles with conventional data.

CAPS

Most efforts at CAPS were spent on testing the reflectivity assimilation capabilities in GSI in September. Funding to CAPS for FY13 and FY14 has not arrived so CAPS was working on project with its own funding. However, strategies in this area are planned and will proceed based on discussions with GSD.

NCEP

The NAMRR development work in 14.5.1.9 is related to this work. (Carley)

GSD

GSD has tested localization options for the GFS-ensemble-based covariances for the 40km hybrid DA system for RAP. GSD is also setting up a GSI repository for use for common GSD-NCEP-CAPS experimentation for hybrid ensemble data assimilation development.

14.5.1.E6 20 Dec 2014 (ESRL)
Report on RAPv3 model and data assimilation configuration and progress. This will include a report on wind verification and its improvements in RAPv3 vs. RAPv2.

14.5.1.E7 New date: 15 Jan 2015 (ESRL and NCEP)
Finalize code for RAPv3 to NCO for implementation at NCEP.

NCEP
A concerted effort by IBM [Taft] and EMC [Michalakes] software engineers at the behest of NCO Director is being made to speed up the WRF-ARWv3.6 code prior to its delivery as part of RAPv3 and HRRRv2. Delivery of speed-ups is expected at end of December. (Manikin, NCO, IBM)

GSD

GSD has been carefully evaluating RAPv3 performance and a set of likely further changes to the ESRL RAP code before transfer to NCEP for the final NCEP-RAPv3 configuration has been established (see general discussion above under Task 1). This set includes WRFv3.6, aerosol-aware microphysics, improved coupling between parameterized shallow convection and short-wave radiation, and improvements to GSI data assimilation including treatment of surface observations and assimilation of cloud and radar data.

14.5.1.E8 31 Jan 2015 (ESRL, NCEP)
Pending NCEP computer readiness and EMC and NCEP initial recommendations, Requests for Change (RFCs) are filed to submit code changes as part of upgrade for RAP v3 software to NCO.

NCEP

This work will not begin until after the HRRR implementation in September. (Manikin)

14.5.1.E9 31 March 2015 (NCAR/MMM)
Incorporate physics and dynamics improvements into WRF from the user community, GSD, and NCEP for use in the RAP and HRRR. Oversee code preparation and integration of these improvements into the WRF repository for future model version releases and FAA use. Assist in the implementation of bug fixes. In collaboration with GSD, assist in the development and evaluation of physics schemes for the RAP and HRRR that are contributed to the ARW.

NCAR/MMM began preparation and code review of the next major WRF release. This will be V3.7 and is targeted for Spring 2015. Current candidate features include vertical nesting, updates of the Noah and Noah-MP LSMs, a scale-aware YSU PBL scheme, the new Grell-Freitas-Olson (from GSD) shallow cumulus scheme, and updated Tiedke Cu and MYNN PBL schemes. Information on the release may be found at: http://www.wrf-model.org/release.php.

Jimy Dudhia (NCAR/MMM) worked with Romain Pilon (NCAR/MMM) to test the Grell-Freitas cumulus scheme. Pilon is comparing runs using G-F on a 3-km grid with fully explicit runs.

NCAR visitor Kjetil Aas (Univ. Oslo, Norway) is working on sub-grid snow effects on soil and its seasonal behavior. With Dudhia, he is evaluating sub-grid variability in WRF with off-line Noah LSM runs using similar forcing and varying snow depths.

Dudhia began a visit at KIAPS (Korea Institute of Atmospheric Prediction Systems) to work with Songyou Hong (Yonsei University, ROK) on common WRF physics including shallow convection. This will continue through November.

Dudhia worked with Ming Chen (NCAR/MMM) to update the PSU shallow convection scheme to V3.6 for Pedro Jimenez (NCAR/RAL) to be able to test in WRF-Solar. The updated scheme is being provided to PSU for further testing.

PLANNED EFFORTS: The development and incorporation of new physics and dynamics for WRF for the RAP and HRRR will continue through this quarter.

UPDATES TO SCHEDULE: NONE

14.5.1.E10 31 March 2015 (ESRL and NCEP)
Deliver progress report on development of NARRE.

NCEP

Discussions have been held among EMC, ESRL/GSD and DTC staff on NARRE path forward. Work on SREF in 14.5.4E2 is closely related. (Du, Ferrier, Zhou, Yang, Jovic, DiMego)

No activity in September on NARRE but work on SREF in 14.5.4E2 is closely related. (Du, Zhou, Yang, Jovic)
<table>
<thead>
<tr>
<th>Task</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Finalize RAPv3 and HRRRv2 for summer 2014 real-time exercise.</td>
<td>APR 2014 COMPLETE</td>
</tr>
<tr>
<td>B. Code for RAPv3 and HRRRv2 finalized for transfer to NCEP/EMC for 2015 implementation. Strong progress toward this at GSD through RAPv3/HRRRv2 current real-time evaluation.</td>
<td>New date Dec 2014</td>
</tr>
<tr>
<td>C. Complete the testing of the 40-20/13 km dual-resolution hybrid DA system for RAP with 3-hourly cycles with conventional data.</td>
<td>New date Jan 2015</td>
</tr>
<tr>
<td>D. Report on RAPv3 model and data assimilation configuration and progress. This will include a report on wind verification and its improvements in RAPv3 vs. RAPv2. Preliminary RAPv3 configuration already available in http://ruc.noaa.gov/pdf/RAPv3-HRRR-April2014.pdf.</td>
<td>DEC 2014</td>
</tr>
<tr>
<td>E. Finalize code for RAPv3 to NCO for implementation at NCEP.</td>
<td>Modified: JAN 2015</td>
</tr>
<tr>
<td>F. Report on wind accuracy from RAP and HRRR by quarter for previous year strongly related to turbulence guidance. Initial evaluation on wind accuracy from RAP and HRRR vs. raobs and aircraft observations has been started and included in this monthly report.</td>
<td>MAR 2015</td>
</tr>
<tr>
<td>G. Requests for Change (RFCs) filed to submit code changes as part of upgrade for RAPv3 software to NCO.</td>
<td>MAR 2015</td>
</tr>
<tr>
<td>H. Deliver progress report on development of NARRE.</td>
<td>MAR 2015</td>
</tr>
</tbody>
</table>

Task 2: Improve Quality Of Convective Weather Forecasts From RAP, HRRR, NAM, NAM-Nests And, Eventually, NARRE And HRRRE

Subtasks

14.5.2.1 15 April 2014 (GSD)
Report on enhancements to RAP 13-km and HRRR 3-km radar data assimilation for beginning 2014 warm-season evaluation using the ESRL-updated version of the HRRR (i.e., HRRRv2).

COMPLETE: As reported in the April 2014 MDE report:
Following extensive testing and evaluation, a RAP/HRRR change bundle was made in late March 2014. The package includes changes to both the data assimilation and model portions of both the RAP and HRRR forecast systems and is summarized in the following report: http://ruc.noaa.gov/pdf/ESRLRAPHRRRchanges2014.pdf

14.5.2.2 1 Dec 2014 (GSD)
Improved (optimized weight factors, and observation selection) 15-min HRRR-based RTMA.

Initial discussions toward improving the RTMA with HRRR background during October.

14.5.2.3 5 August 2014 (GSD)
Complete testing of updated version of 3-km sub-hourly radar assimilation within HRRR pre-forecast cycling period.

We have completed retrospective testing of an enhancement to the radar observation-based rain and snow hydrometeor specification within the HRRR pre-forecast period. The enhancement is to specify rain and snow hydrometeors from radar reflectivity observation throughout the entire column (using observed radar reflectivity for the lighter precipitation range from 15-28 dBZ). Previously, we only did full column building of precipitation hydrometeors from radar reflectivity data when the surface temperature was less than 5C (primarily building snow). When the surface temperature was greater than 5C, only a single layer of precipitation hydrometeors was added (at the level of maximum observed reflectivity). The impact from testing this radar-assimilation enhancement with 15-28 dBZ with warm-season (Tsfc > 5C) surface conditions has been successful, to reduce a low bias in short-term (0-2 hr) prediction of light to moderate precipitation in the warm season.

Additional 3-km radar assimilation work is underway to test and evaluate fully cycled 3-km HRRR runs. Preliminary tests in which the HRRR land-surface fields have been fully cycled (as opposed to just interpolated from the fully cycled RAP land surface model fields) have been successful (reasonable field evolution, indications of improved model performance) This is being followed to experiments with full data assimilation cycling. This testing has been in addition to ongoing work to reduce the afternoon warm and dry bias in the HRRR (see below and task 3).

The HRRR summer evaluation has indicated expected results (improvements in 2014, clues for next refinements). Retrospective and parallel testing of RAP runs with modifications to reduce the warm/dry bias have yielding encouraging results, which lead to improvements in subsequent nested HRRR runs. These RAP changes are described in more detail under task 3 and have included: 1) the addition of a provision for sub-grid-scale cloud fraction and associated interaction with shortwave radiation and 2) adjustments to the wilting point parameters in the land-surface model, resulting in increased transpiration from the parameterized vegetation. Work is also ongoing to test and evaluate WRFv3.6.1 for RAP and HRRR.

The summer 2014 HRRR real-time evaluation exercise concluded on 31 October. Overall results indicated good performance, especially at long lead times, and good reliability. Evidence of a warm / dry bias was seen and retrospective and parallel runs with changes to address this issue have indicated improvement. Following the completion of the warm season evaluation, these changes have been incorporated into the real-time experimental RAP and HRRR and will be included in the RAPv3 / HRRRv2 upgrade at NCEP in 2015. A report summarizing the HRRR results has been prepared and is available at http://ruc.noaa.gov/pdf/HRRR_summer_2014_report.pdf

Deliverables

14.5.2.E1 1 August 2014 (now planned for 30 Sept 2014) (NCEP and ESRL)
HRRRv1 implemented at NCEP pending available computing resources.

The 3-km HRRR was successfully implemented operationally at NCEP on 30 Sept. 2014, culminating several years of development, testing, and refinement, with long-term support by FAA/AWRP and NOAA operational modeling. Key collaborating organizations with GSD include NCEP/EMC, NCEP/NCO, and NCAR (WRF/ARW). HRRR forecasts are now being distributed to many different users by NOAA/NCEP, with reduced latency (1-h forecast by ~ +50 min., 15-h forecast by ~ +90 min.) and very near 100% reliability.

NCEP

The HRRR was successfully implemented into NCEP operations on 30 September. (Manikin)

14.5.2.E2 1 April 2014 (NCEP)
Subject to NCEP Directors’ approval, upgrades to HiResWindow and initial convection-allowing-scale ensemble (NSSE) becomes Operational at NCEP.

The HiResWindow version 6.0 upgrade package was implemented into NCEP Production on June 11th. Version 6.1 is being planned for FY15. That upgrade will be connected to the initial roll-out of a time-lagged HRRRE for hourly updated 12 hr forecasts, and to NCEP Convection-Allowing-Scale Ensemble (NCASE) run every 6 hours with guidance out to 36 hr including NAM-nest, HiResWindow members with some time-lagged members at least initially. (Pyle, DiMego, Zhou)
14.5.2.E3 1 April 2014 (NCEP)
With approval of NCEP Director, RTMAv6 upgrade package is implemented at NCEP.

The RTMA/URMA upgrade version 2.2.1 was implemented on January 28, 2014. Work continues on FY15 v2.3 upgrade.

(Manuel Pondeca, Steve Levine, Yanqiu Zhu, Jacob Carley, Ying Lin, Jeff McQueen, Geoff Manikin, Jim Purser, Dave Parrish, Yuqiu Zhu)

14.5.2.E4 15 July 2014 (ESRL)

Report on status of enhancements to HRRR for 2014 version, based on retrospective and real-time testing.

Mid-term assessment indicates overall good performance for 2014 HRRR (RAPv3/HRRRv2) compared to 2013 version. In particular, reduced (improved) bias for radar reflectivity is seen in 2014 HRRR compared to 2013. CSI scores are similar overall. More details can be found in the report at:

ESRL

14.5.2.E5 15 Oct 2014 (ESRL)

Complete 2014-summer evaluation with revised 3-km HRRR running every 1 h.

• Conduct real-time summer 2014 HRRR forecasts using 3-km WRF with 3-km assimilation initialized with radar-enhanced Rapid Refresh over full CONUS domain, monitor performance, modify code/scripts as needed, maintain high reliability working with ESRL computer facility
• Coordinate with other AWRP users and other collaborators, including coordination of HRRR grid transfers
• Provide project management
• Lead writing of report on summer 2014 HRRR experiments

The summer 2014 HRRR real-time evaluation exercise concluded on 31 October and the GSD experimental versions of the RAP and HRRR that were frozen during the exercise were released for use in final real-time testing toward the next NCEP operational implementation. The HRRR performed well during the summer exercise, as evidenced by statistical skill scores, case study results, and subjective user comments. A report summarizing the HRRR results has been prepared and is available at http://ruc.noaa.gov/pdf/HRRR_summer_2014_report.pdf

14.5.2.E5.1 31 Mar 2015 (ESRL)

Report on convective weather forecast accuracy from HRRR by quarter for previous year.

14.5.2.E6 20 Jan 2015 (ESRL and NCEP)

Based on real-time parallel and retrospective testing, HRRRv2 code finalized and ready for transfer to NCEP/EMC

ESRL

This date has been pushed back into Q2 (20 Jan 2015, with operational implementation of RAPv3 / HRRRv2 currently scheduled Q3 2015. ESRL will continue evaluation of the HRRRv2 code until an expected transfer in January 2015. Changes from ongoing testing and evaluation to address the warm, dry bias in the RAP and HRRR have shown improvement and have been incorporated into this code upgrade package. These change have included improvement in the land-surface model (snow treatment, sub-grid mosaic, wilting point), enhancements to the PBL scheme (shallow cumulus, effective sub-grid clouds), improved radiation effects of clouds in RRTMG radiation, and modified Grell-Freitas deep convection. Additional changes being evaluated are the addition of mesonet data in the RAP and HRRR data assimilation and the addition of radar radial velocity data in the RAP assimilation. These changes, along with upgrades to latest versions of GSI and WRF (v3.6.1), will be included in the code transfer to NCEP for the RAPv3 / HRRRv2. GSD is also working with computer specialists from NCEP to provide further optimization of the HRRR code for faster runtime on fewer computer cores. Toward this goal, GSD has provided a HRRR code version to the computer specialists for optimization testing.

NCEP

HRRRv1 must be implemented at NCEP before any transfer to EMC of the HRRRv2 code currently being tested at ESRL can be considered. The slip in the HRRRv1 implementation into September means this deadline may need to slip as well. See 14.5.1.E7 for code optimization work. (Manikin)
HRRRv1 must be implemented at NCEP before any transfer to EMC of the HRRRv2 code currently being tested at ESRL can be considered. The slip in the HRRRv1 implementation into September is consistent with the HRRRv2 code transfer pushback indicated above. (Manikin)

14.5.2.E7 15 Jan 2015 (ESRL, assistance from CAPS under 5.1 support)
Report on initial retrospective test of storm-scale ensemble data assimilation for small Northeast U.S. domain. See subtask 14.5.2.6 for details on preliminary testing work in this area.

14.5.2.E8 31 Jan 2015 (ESRL/GSD, NCEP)
Pending NCEP computer readiness and EMC and NCEP initial recommendations, Requests for Change (RFCs) are filed to submit HRRR code changes as part of upgrade for HRRR v2 software to NCO.

NCEP
This work has not yet started pending implementation of HRRRv1. (Manikin)

ESRL
This work awaits final HRRRv1 operation implementation, completion of testing of changes for HRRRv2 at ESRL/GSD, and transfer of these changes to NCEP/EMC.

This work awaits transfer of the RAPv3 / HRRRv2 code versions with the final changes to NCEP/EMC.

14.5.2.E9 1 Feb 2015 (ESRL and NCEP)
Provide revised 15-min RTMA surface analyses as improved alternative for frontal diagnostics and other diagnostics from surface analyses for CoSPA.

ESRL
This work awaits completion of testing of changes for HRRRv2 at ESRL/GSD, and transfer of these changes to NCEP/EMC.

NCEP
Work towards a 15-min RTMA must wait for a) completion of the HRRRv1 implementation in September, b) upgrade to RTMA/URMA in FY15Q2, and the upgrade to WCOSS Phase 2 computer. (Manuel Pondeca, Steve Levine, Jacob Carley, Jim Purser)

14.5.2.E10 15 March 2015 (ESRL)
Finalize all changes to the HRRR for the summer 2015 exercise into a frozen version of HRRR (and parent experimental RAP). This will include latest results on reflectivity verification.

Deliverables

<table>
<thead>
<tr>
<th>Task 2: Improve Quality Of Convective Weather Forecasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRRRv1 implemented at NCEP pending available computing resources</td>
</tr>
</tbody>
</table>

Delivery Schedule

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SEPT 2014</td>
</tr>
<tr>
<td>COMPLETE</td>
</tr>
</tbody>
</table>

| The 3-km HRRR was successfully implemented operationally at NCEP on 30 Sept. 2014, culminating several years of development, testing, and refinement, with long-term support by FAA/AWRP and NOAA operational modeling. |

Delivery Schedule

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPLETE</td>
</tr>
</tbody>
</table>

Delivery Schedule

| JUL 2014 |
| COMPLETE |

| C. Complete 2014-summer evaluation with revised 3-km HRRR running every 1 h. Conduct real-time summer 2014 HRRR forecasts using 3-km WRF with 3-km assimilation initialized with radar-enhanced Rapid Refresh over full CONUS domain, monitor performance, modify code/scripts as needed, maintain high reliability working with ESRL computer facility Coordinate with other AWRP users and other collaborators, including coordination of HRRR grid transfers. Provide project management. Lead writing of report on summer 2014 HRRR experiments. STATUS: Summer 2014 evaluation concluded, report available at: http://ruc.noaa.gov/pdf/HRRR_summer_2014_report.pdf |

Delivery Schedule

| OCT 2014 |
| COMPLETE |

| D. Based on real-time parallel and retrospective testing, HRRRv2 code finalized and ready for |
| Delivery |
| Nov 2015 |
transfer to NCEP/EMC. (But not to be transferred until Jan 2015)

E. Report on initial retrospective test of storm-scale ensemble data assimilation for small Northeast U.S. domain. JAN 2015

F. Requests for Changes (RFCs) are filed to submit HRRR code changes as part of upgrade for HRRRv2 software to NCO. New Date: MAR 2015

G. Provide revised 15-min RTMA surface analyses as improved alternative for frontal diagnostics and other diagnostics from surface analyses for CoSPA. FEB 2015

H. Report on convective weather forecast accuracy from HRRR by quarter for previous year. MAR 2015

I. Finalize all changes to the HRRR for the summer 2015 exercise into a frozen version of HRRR (and parent experimental RAP). This will include latest results on reflectivity verification. MAR 2015

Task 3: Improve Quality Of Icing Weather Forecasts From RAP, HRRR, NAM, NAM-Nests And, Eventually, NARRE And HRRRE

Subtasks

14.5.3.1 1 Apr 2014 (GSD, NCEP and NCAR/RAL)
Begin initial testing of the current version of NCAR "aerosol-aware" microphysics in RAP and HRRR models. This will use a climatological aerosol distribution for cloud-condensation nuclei and ice nuclei initially.

GSD

The WRFv3.6+ version, upgraded to be essentially equivalent to the WRFv3.6.1 release in August 2014 and to incorporate RAP / HRRR specific changes, continues to run is now running in the real-time RAP-dev3 cycle with the Thompson-Eidhammer aerosol-aware microphysics activated. The FY14 Q4 report contains a summary under this task of our comparison between the aerosol-aware microphysics and the unaware Thompson microphysics in WRFv3.5.1.

We don’t yet have enough winter cases to give a definitive assessment concerning precipitation type predictions of the aerosol-aware microphysics as compared with those from the WRFv3.5.1 Thompson aerosol unaware microphysics. We continue to note that the sky coverage of high (i.e., Cirrus) cloudiness is notably less with the aerosol-aware scheme. However, the actual coverage by Cirrus and Cirrostratus is also less than predicted by the aerosol-unaware scheme in WRFv3.5.1, but is usually somewhat more than produced by the aerosol-aware. Nevertheless, the aerosol-aware appears to overall have the edge in accuracy of coverage by high clouds composed predominately of ice crystals. We continue to be in contact with Greg Thompson on these issues.

NCEP

EMC will await the results of GSD’s effort before planning physics development in 2015 or beyond. Thompson’s work at NCAR on including aerosols in his microphysics scheme is also being followed with the NMMB. (Ferrier, Aligo)

14.5.3.2 1 Apr 2014 (GSD)
Continue evaluation and modification of proposed RAPv3 physics suite in preparation for submission of code to NCEP, pending NCEP readiness, later in 2014.

As noted in the FY2014 Q4 report under Task 3, major changes to the original April version of the RAPv3 scheme including to the RUC Land-Surface Model, the MYNN surface-layer and PBL schemes and the Grell-Freitas shallow cumulus schemes have largely eliminated the warm-season warm-dry bias in daytime surface conditions over the eastern CONUS.

At this writing, upgrades to the April 2014 version of RAPv3 and HRRRv2 physics that we expect to make available to NCEP include the following. The first 3 of these were critical to alleviating the summertime warm-dry bias.

Model improvements for advanced version RAPv3/HRRRv2
• Activating the “boundary-layer cloud’ option in the MYNN PBL, and coupling the inferred cloud cover to the RRTMG radiation
• Activation and considerable revision to the Grell-Frietas shallow convection scheme (now sometimes referred to as the GFO scheme, owing to Joe Olson’s involvement in improving the scheme), plus improving the coupling of the parameterized shallow convection with short-wave radiation.
• A modification to the RUC LSM to prevent transpiration from being totally shut down once the wilting point is reached for the cropland land-use area only. In effect, soil moisture is added to maintain conditions near the wilting point, simulating the effects of irrigation in cropland areas.

• Correcting a bug in the WRF model namelist in which the attenuation of solar radiation by (climatological) aerosol was inadvertently turned off. This had only a minor beneficial effect.

• Use of the aerosol-aware microphysics scheme (pending further investigation—see Subtask 1, above).

• Miscellaneous changes to the MYNN surface and PBL schemes that have the effect of reducing slightly the surface heat flux and allowing for counter gradient heat flux near the top of the daytime mixed layer.

• A general upgrade to the RUC LSM, including better energetic consistency and changes to aspects of the scheme having to do with snow (e.g., albedo under conditions of partial snow cover).

• Some improvements to Grell-Freitas deep-convection scheme.

14.5.3.3 1 May 2014 (GSD and NCAR/RAL)
Begin efforts toward adding aerosol species or size categories as tracers to the RAPv3 and HRRR configurations of the WRF model, including surface sources, which are highly parameterized in the first version of the new microphysics scheme. Interact with WRF-Chem experts for aerosol source datasets, surface emission inventories, and translation of specific aerosol variables into the constituents needed by the microphysics scheme.

Discussions are underway between GSD and NCAR about how to incorporate prognostic aerosol information from the RAP-Chem run, or even FIM-chem, into experimental versions of the RAP and HRRR. A possible application would be to replace the initial climatological aerosol distribution in the current NCAR-Thompson aerosol-aware microphysics with an actual predicted initial distribution to better capture the effects of synoptic weather systems on the initial aerosol distribution.

Discussions have started between GSD and NCAR about how to incorporate prognostic aerosol information from the RAP-Chem run into experimental versions of the RAP and HRRR.

14.5.3.4 1 May 2014 (NCEP)
Perform case-study simulations of high-impact weather events in order to evaluate NMMB model running the existing and newly added Thompson et al (2008) microphysics schemes.

EMC will begin the NMMB case studies once all the remaining issues related to coupling the Thompson microphysics and RRTM radiation are resolved. Many issues have been identified and most were resolved in October. (Ferrier, Aligo, Lin)

14.5.3.5 1 Jun 2014 (NCAR/RAL)
Test and evaluate the ice initiation mechanisms via aerosols to ensure the water-ice balance is relatively un-changed versus the prior scheme or else the updated scheme may result in significant loss of skill of aircraft icing forecasts since water is rapidly depleted by ice when too many ice crystals are supplied.

14.5.3.6 1 Sep 2014 (NCAR/RAL)
Continue to increase the complexity and interactions between the newly added aerosol variables in the microphysics with the PBL, radiation, convection, and shallow convection schemes. Particular focus will be the depletion of aerosols nucleated by sub-grid-scale eddies, the effects of which are represented by the PBL and convection schemes.

Current efforts: During the month of October 2014, T. Eidhammer and G. Thompson were actively investigating (together with J. Olson and J. Brown) a possible issue in HRRR of too few upper level ice clouds in the newest version of the scheme. A suite of sensitivity experiments has been designed and implemented for the 2011 Feb 16 case that was published in the literature and NCAR-RAL is actively diagnosing sensitivities with 0.1X, 1.0X, 10X number of ice-friendly aerosols as well as the older Cooper ice activation methods to determine an optimal solution in the RAP/HRRR models.

Future work: The ice initiation by aerosols code is being tested to resolve concerns of different upper level ice clouds as well as perform sensitivity analysis on the connections of aerosols, ice nucleation, clouds and precipitation. NCAR-RAL will assist NOAA-GSD to adopt/utilize the new scheme.

Problems encountered/Delays: None at this time.

Interface with other organizations: Various DOE Solar-WRF team members including GSD

Deliverables

(All Option A unless noted otherwise)
14.5.3.E1 1 Aug 2014 (NCAR)
Submit updated cloud microphysics code to WRF repository; document changes and purpose of changes in a report.

14.5.3.E2 31 Aug 2014 (ESRL)
Complete initial evaluation of aerosol-aware microphysics in RAP/HRRR test evaluation/demonstration at GSD for its suitability for future NCEP implementation.

14.5.3.E3 15 Mar 2015 (NCAR)
Submit a report and possible journal manuscript related to the aerosol-ice sensitivity experiments including specific application to aircraft icing.

The text specifically mentions a report or journal paper by Dec 2014 regarding our work to test aerosol-ice nucleation (14.5.3.E3). We request a change to Mar 2015 for that item. It is NOT currently in the deliverable table itself, but we request a date change regardless. The work is currently being performed but will likely take longer than previously estimated.

14.5.3.E4 20 Dec 2014 (ESRL)
At the annual NCEP Product Suite Review report on RAP / HRRR physics upgrades. This will include metrics on improvement to cloud and RH forecasts from these physics upgrades.

14.5.3.E4.1 31 Mar 2015 (ESRL)
Report on RH/cloud forecast accuracy from RAPv3 and HRRRv2 by quarter for previous year, related to icing guidance.

14.5.3.E5 31 Jan 2015 (ESRL/GSD, NCEP)
Pending NCEP computer readiness and EMC and NCEP initial recommendations, Requests for Change (RFCs) are filed to submit WRF physics code changes as part of upgrade for Rapid Refresh v3 software to NCO.

NCEP
This work has not yet started pending the HRRR implementation. See 14.5.1.E7 for code optimization work, which may involve or impact physics development. (Manikin)

<table>
<thead>
<tr>
<th>Deliverables</th>
<th>Improve Quality Of Icing Weather Forecasts</th>
<th>Delivery Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Complete initial evaluation of aerosol-aware microphysics in RAP/HRRR test evaluation/demonstration at GSD for its suitability for future NCEP implementation. ESRL/GSD: The aerosol-aware microphysics is now running and under evaluation in an experimental real-time RAP cycled run (“RAP-dev3”). See discussion under subtask 1.</td>
<td>AUG 2014 COMPLETE</td>
</tr>
<tr>
<td>B.</td>
<td>At the annual NCEP Product Suite Review report on RAP/HRRR physics upgrades. This will include metrics on improvement to cloud and RH forecasts from these physics upgrades.</td>
<td>DEC 2014</td>
</tr>
<tr>
<td>C.</td>
<td>Requests for Change (RFCs) are files to submit WRF physics code changes as part of upgrade for Rapid Refresh v3 software to NCO.</td>
<td>JAN 2015</td>
</tr>
<tr>
<td>D.</td>
<td>Report on RH/cloud forecast accuracy from RAPv3 and HRRRv2 by quarter for previous year, related to icing guidance.</td>
<td>MAR 2015</td>
</tr>
</tbody>
</table>

Task 4: Develop Convection-ATM-Specific Improvements To Guidance From The HRRR (And Later, HRRRE) And Interact With CoSPA (Or Other) Program Partner Labs And The FAA

Subtasks

14.5.4.1 15 Aug 2014 (GSD)
Initial testing toward variational/ensemble cloud analysis scheme within the GSI framework.

Several meetings have been conducted between Ming Hu, Curtis Alexander and new GSD scientist, Terra Ladwig, to plan the first steps towards the variational/ensemble cloud analysis scheme within GSI. These meetings discussed details to handle processing of satellite (NESDIS and NASA Langley) cloud and radar precipitation hydrometeors in a new framework that will handle the mapping of these observations onto the analysis grid of any model background (RAP, NAM, GFS). Ming Hu will be updating the has updated the GSD GSI repository code to include recent commits to the EMC GSI repository and then Terra will add the is now adding the GSI I/O capability for handling cloud-ice number concentration. Additional discussion took place regarding the creation of observation operators to map model cloud hydrometeors into observations of cloud base and cloud top heights for the variational minimization. Collaboration with NCAR is planned in an upcoming meeting with Tom Auligné and Gael Descombes was also discussed to obtain initial
model background error covariance estimates for cloud and precipitation hydrometeors. Future planning was also discussed regarding use of the GFS ensemble including the partitioning of total water from the GFS into cloud water and ice and then how to merge analyzed cloud back to total water. Initial progress towards a variational/ensemble cloud analysis scheme will be presented at the AMS annual meeting in January 2015.

14.5.4.2 15 Nov 2014 (GSD, NCEP)
Finalize new cloud/hydrometeor analysis for 2015 RAPv3/HRRRv2

The DFI work done in 14.5.1.2 is related to this work. (Liu, Carley)

GSD

Modifications continue to the WRF-ARW version 3.6 codes including the creation of a total cloud field that combines explicit, parameterized and boundary layer clouds fields for a more accurate depiction of the modeled cloud field that includes unresolved scales. Initial plans have been made to improve the analysis of cloud ice information from satellite observations by incorporating both cloud ice mixing ratio and number concentration into the cloud analysis process for use by the Thompson microphysics scheme. Preliminary case study testing of full-column precipitating hydrometeor building in the HRRR cloud/hydrometeor analysis has been completed. This case study was followed by a retrospective experiment to build precipitation hydrometeors only at lower observed reflectivity thresholds below 28 dBZ. Results of this test indicate an improved 3-D analysis of precipitation and an increase in 1-hr accumulated precipitation at low thresholds. Additional tests will include application of the precipitating hydrometeor analysis during the sub-hourly assimilation/pre-forecast period in the HRRR along with full column cloud building.

Testing of the RAPv3 and HRRRv2 cloud and precipitation hydrometeor analysis is underway with a merging of the latest EMC GSI code into the GSD GSI repository now complete. Testing of the new GSI code was conducted with a weeklong retrospective period from June 2014 and now in a real-time developmental version of the RAP. Several problems were resolved during the merging of the new GSI code including the handling of the NASA Langley cloud data and use of satellite radiances during assimilation. Two additional changes are being incorporated into the cloud and precipitation hydrometeor analysis including avoiding building clouds from METAR ceilometer data where satellite data indicates clear conditions and an improved 3-D radar coverage map to avoid removal of snow hydrometeors from the analysis where radar observations are not available. Experimental versions of the RAP and HRRR run in real-time at ESRL will be updated in the coming weeks as all of these changes are finalized and retrospective tests will be conducted to quantify the impact of the improvements.

14.5.4.3 15 Feb. 2015 (GSD, NCEP)
Report on progress toward variational/ensemble cloud analysis

NCEP

The ability to have vertically varying localization for regional hybrid variational/ensemble analysis and several bug fixes on the cloud analysis was successfully added to the code repository in July. (Liu, Wu, Carley)

14.5.4.4 15 March 2015 (NCEP, ESRL)
Groups collaborate on initial work toward cloud analysis scheme for use in NARRE ensemble system.

NCEP

No activity in this quarter. (Liu, Wu, Carley)

14.5.4.5 31 March 2015 (ESRL, NCEP)
Establish routine verification of NCEP suite of ceiling & visibility guidance and begin design of calibration strategy for ensemble systems.

NCEP

Total cloud cover forecasts from the NAM CONUS nest, RAP, and HRRR were verified against the AFWA and CLAVRx cloud analyses using the grid-to-grid (g2g) code, and the verification records were added to the g2g MySQL verification site. HRRR forecasts of composite reflectivity and visibility were also verified against the radar mosaics and the URMA, respectively. Stats can now be isolated for the NAM Fire Weather nest whose domain is not fixed. This has been done for all the grid2obs models & stats and for HRRR versus NAM FireWx reflectivity forecasts. The cloud and visibility verification was also extended to cover Alaska for the GFS, the NAM and its Alaska nest, and the RAP. The codes to
calculate fraction skill scores (FSS) of composite reflectivity were modified to verify reflectivity forecasts from 4-km NMME retrospective (launcher) runs. (Zhou, Shafran, Du, Yang)

Deliverables

14.5.4.E1 1 April 2014 (NCEP)
With approval of NCEP Director, RTMAv6 upgrade package is implemented at NCEP (including visibility).

The RTMA/URMA upgrade version 2.2.1 was implemented on January 28, 2014. (Manuel Pondoca, Steve Levine, Yanqiu Zhu, Ying Lin, Jeff Mcqueen, Geoff Manikin, Jim Purser, Dave Parrish, Yuqiu Zhu)

14.5.4.E2 1 June 2014 (NCEP)
With approval of NCEP Director, SREF, HiResWindow and NAM upgrade packages are implemented at NCEP (including corrections to ceiling, visibility and cloud field prediction & diagnoses).

SREFv6.1 package was implemented 2 April, HiResWindowv6.0 package was implemented 11 June, and NAMv3.1 package was implemented 12 August completing this deliverable.

A first complete configuration of the new SREFv7.0 upgrade system is finished and its parallel test is running routinely at EMC for verification. The test data is also accessible to NCEP service centers to look at it. Preliminary verification shows the overall performance is satisfied and an adjustment to IC perturbation size might be needed. Several more draft plans were provided to EMC to improve the mixture of different physics packages in the NMME and ARW members for the next SREF upgrade. The latest plan increased the mixture between different physics options with different model source analyses from the NAM, GFS, and RAP that will be used for initial conditions. (Du, Zhou, Yang, Ferrier, Jovic, Pyle, Rogers)

14.5.4.E3 15 Dec 2014 (ESRL/GSD)
Finalize cloud/hydrometeor assimilation for RAPv3 and transfer code to NCEP.

14.5.4.E4 15 Feb 2015 (ESRL/GSD)
Report on variational / ensemble/hybrid cloud analysis development for RAP and NARRE

14.5.4.E5 31 March 2015 (NCEP)
Subject to NCEP Directors’ approval, upgrades to RTMA/URMA (addition of total cloud and cloud base height [ceiling]) become Operational at NCEP.

Work started on writing code to read GOES13 and GOES15 imager sky cover products, provided by U of Wisconsin/CIMSS, which will be used to estimate total cloud amount in the RTMA. A buddy-check quality control algorithm was written for temperature observations within the GSI, and the code was provided for inclusion in the next RTMA/URMA upgrade. The RTMA parallel webpages were also maintained. Two new parallel RTMA's were launched for field evaluation, one HRRR-based and the other is NAM and HRRR-based. One of the two will be chosen for implementation in Q2 FY14 based on feedback from the field. At this point, NAM/HRRR is favored because of spurious mesoscale features seen in the HRRR. Both include a new variable (total cloud cover) and a relaxed gross-error check over complex terrain. (Pondeca, Carley, Levine)

<table>
<thead>
<tr>
<th>Deliverables Task 4: Develop Convection-ATM-Specific Improvements</th>
<th>Delivery Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Report on ATM impact related to skill of HRRR forecast.</td>
<td>FEB 2015</td>
</tr>
<tr>
<td>B. Complete implementation of new microphysics scheme and associated reflectivity and ET diagnostics in real-time ESRL/GSD RAP and HRRR prior to code freeze for 2015-exercise release.</td>
<td>MAR 2015</td>
</tr>
<tr>
<td>C. Report on baseline testing of the early 2015 HRRR version.</td>
<td>MAR 2015</td>
</tr>
<tr>
<td>D. Report on evaluation of revised Thompson aerosol-aware microphysics for RAP/HRRR for its effects on echo-top and reflectivity in ESRL RAP/HRRR.</td>
<td>MAR 2015</td>
</tr>
</tbody>
</table>