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ABSTRACT

Global positioning system radio occultation (GPS/RO) measurements from the Challenging Minisatellite
Payload (CHAMP) and Satelite de Aplicaciones Cientificas-C (SAC-C) satellites are used to improve
tropospheric profile retrievals derived from the Aqua platform high-spectral-resolution Atmospheric In-
frared Sounder (AIRS) and broadband Advanced Microwave Sounding Unit (AMSU) measurements
under clear-sky conditions. This paper compares temperature retrievals from combined AIRS, AMSU, and
CHAMP/SAC-C measurements using different techniques: 1) a principal component statistical regression
using coefficients established between real (and in a few cases calculated) measurements and radiosonde
atmospheric profiles; and 2) a Bayesian estimation method applied to AIRS plus AMSU temperature
retrievals and GPS/RO temperature profiles. The Bayesian estimation method was also applied to GPS/RO
data and the AIRS Science Team operational level-2 (version 4.0) temperature products for comparison. In
this study, including GPS/RO data in the tropopause region produces the largest improvement in AIRS–
AMSU temperature retrievals—about 0.5 K between 100 and 300 hPa. GPS/RO data are found to provide
valuable upper-tropospheric information that improves the profile retrievals from AIRS and AMSU.

1. Introduction

The combination of active remote sensed global po-
sitioning system (GPS) data and passive high–spectral
resolution infrared (IR) radiometric measurements
[like Atmospheric Infrared Sounder (AIRS)] is studied
to improve the quality of the atmospheric temperature
retrievals over those achievable from either system
alone. Improved retrievals are considered likely be-

cause the two systems have complementary character-
istics (Collard and Healy 2003), especially around the
tropopause region: the GPS radio occultation (GPS/
RO) system provides good absolute accuracy (0.15% in
refractivity) near the tropopause with very good verti-
cal resolution (100 m) but poorer horizontal resolution
(500 km), while the AIRS IR sounding system has high
horizontal (13.5 km at nadir) but poorer vertical reso-
lution (1 km for temperature and 2 km for moisture
at the tropopause and below; see Aumann et al. 2003;
http://www-airs.jpl.nasa.gov/Data/GetAIRSdata/
CoreProducts/). In an earlier study, Borbas et al. (2003)
showed that adding GPS/RO measurements to Ad-
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vanced Television and Infrared Observation Satellite
(TIROS) Operational Vertical Sounder (ATOVS) re-
trievals produced improved atmospheric temperature
and moisture profiles.

Using measurements from polar orbiting infrared
and microwave (MW) sounders, radiometric tech-
niques infer temperature and moisture profiles in the
lower and upper troposphere with limited vertical reso-
lution, since the measurements are highly correlated. In
addition, in the tropopause region, where temperature
does not change appreciably with height, radiometric
techniques are challenged to distinguish the tropopause
altitude. GPS radio occultation measurements can pro-
vide refractivity profiles with high accuracy around the
tropopause and in the stratosphere that are related to
temperature and moisture (Ware et al. 1996; Rocken et
al. 1997). Improved temperature and moisture profile
retrievals are thought to be possible by combining data
from these two complementary systems. More recently,
information from AIRS and GPS/RO measurements
from the Challenging Minisatellite Payload (CHAMP),
Satelite de Aplicaciones Cientificas-C (SAC-C), and
later Constellation Observing System for Meteorology,
Ionosphere and Climate (COSMIC) is being assimi-
lated in numerical weather prediction (NWP) models at
operational NWP centers (e.g., the European Centre
for Medium-Range Weather Forecasts and the Joint
Center for Satellite Data Assimilation) with positive
impact in the upper troposphere and stratosphere (Cu-
curull et al. 2006; Healy and Thepaut 2006; Kuo et al.
2000; Liu et al. 2007).

The GPS/RO is an active limb sounding system. The
current radio-based satellite navigation system, the
global positioning system (see Hofmann-Wellenhof et
al. 2004 for GPS theory) operated by the United States,
has 24 satellites that transmit radio signals on two fre-
quencies continuously. In the near future (2010–11), the
Russian Global Navigation Satellite System (GLONASS)
will be restored and the European Galileo system will
become operational providing increased opportunities
for more occultations. In a GPS/RO system the receiver
is generally located on a low earth orbiting (LEO) sat-
ellite. An occultation occurs whenever a GPS (trans-
mitter) satellite rises or sets over the earth and the
transmission path traverses the earth’s atmospheric
limb. The ray path through the atmosphere is refracted
according to Snell’s law. Knowing the exact locations of
the receiving and transmitting satellites allows the re-
fractive index (or refractivity) of the atmospheric layer
through which the ray passes to be derived. The move-
ment of the two satellites produces a vertical profile of
refractivity. With 24 GPS transmitter satellites, ap-

proximately 500 occultations globally are received by
an LEO satellite such as CHAMP or SAC-C. With the
launch of the six LEO spacecraft for the new U.S. and
Taiwan COSMIC mission (Rocken et al. 2004) in April
2006, a massive increase in the number of GPS/RO
measurements (about 2500 occultations per day) oc-
curred.

Radiances from AIRS, a high-spectral-resolution in-
frared sounder, along with brightness temperatures
(BTs) from Advanced Microwave Sounding Unit-A
(AMSU), a microwave sounder, were combined with
the GPS/RO measurements in this study. The AIRS
and AMSU instruments were launched on the National
Aeronautics and Space Administration (NASA) Earth
Observing System (EOS) Aqua satellite in May 2002.
More information about the AIRS instrument and
measurements can be found in Aumann et al. (2003) or
on the Web (http://airs.jpl.nasa.gov/). The operational
AIRS level 2 (L2) V4.0 retrievals are described in Suss-
kind et al. (2006).

This paper combines GPS/RO and AIRS–AMSU
measurements in a statistical study to better define the
tropopause location and temperature. Section 2 pro-
vides a summary of the data used in this study. Section
3 describes the retrieval methods. Section 4 discusses
the cloud screening approach and the AIRS spectral
channel selection. Results are presented in section 5
and validation at the Atmospheric Radiation Measure-
ment Program (ARM; Ackerman and Stokes 2003;
Stokes and Schwartz 1994) sites is in section 6. Conclu-
sions follow in section 7.

2. The data

AIRS, AMSU, and GPS/RO (from both CHAMP
and SAC-C satellites) measurements and radiosonde
observations (raob) were collected between September
2002 and December 2005. Raobs were used for both
training algorithms and subsequent validation. GPS/
RO data were extracted at 200-m vertical resolution at
altitudes between 8 and 26 km. Over 380 000 AIRS-
raob collocations from the National Centers for Envi-
ronmental Prediction (NCEP) quality controlled final
observation data files (PREPQC) and over 50 000
SAC-C (September 2002–January 2005) and 140 000
CHAMP (September 2002–December 2005) occulta-
tions between 8 and 26 km were collocated from the
NASA/Jet Propulsion Laboratory (JPL) Genesis Web
site for this study. The criteria for collocation were a
time separation of �3 h and distance separation of
�300 km. AIRS measurements were assumed to be
made at nadir and raobs were assumed to have no hori-
zontal drift. Since the GPS/RO measurements have
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considerable horizontal extent (as much as 500 km or
more) and this study focuses on the tropopause region,
the location of the occultations was considered to be at
the tangent point at 11 km and the GPS/RO profiles
were also assumed to be vertical. An illustration of the
horizontal shift of raob measurements and GPS/RO oc-
cultations can be seen in Figs. 1a,b.

These data yielded 5336 AIRS–AMSU–GPS–raob
collocations (top panel of Fig. 2). After testing for clear-
sky conditions (see section 4 for more details), 973 col-
locations remained (bottom panel of Fig. 2); of these,
841 include operational AIRS collection 4 products
[with quality flag (Qual_temp_profile_top) equal to 0].
To establish a training dataset along with a test dataset,
every fifth collocation was placed in the test dataset and

the remaining 80% were used as a training dataset for
the retrieval methods described below.

3. Retrieval methods

Several retrieval approaches were tried on the clear-
sky dataset containing 841 collocated samples. To show
the effect of the high vertical resolution GPS/RO data,
the statistics were calculated for 101 pressure levels in-
stead of 1 or 2 km layers as is more common (Divakarla
et al. 2006; Susskind et al. 2006; Tobin et al. 2006; Weisz
et al. 2007; Wu et al. 2005). Using 101 levels revealed
details that are suppressed when using just layers. Bias
and RMS differences were computed between the re-
trievals and collocated (PREPQC) radiosonde profiles
in the test dataset.

FIG. 1. An example of AIRS–AMSU, GPS/RO data and best estimate profile collocation
over the SGP site. (a),(b) The locations–tracks of the different measurements. (c) The tem-
perature retrievals from different sources: AIRS L2 product (AirsL2std; blue), the ARM best
estimate profile (ArmBe; red), the AIRS–AMSU PC statistical regression temperature
retrieval without GPS/RO data (AirsAmsuRtvl; black) and with GPS/RO data
(AirsAmsuGpsRtvl; light blue), and the GPS/RO temperature profile (GPS/RO; green). (d)
Observed AIRS BTs.
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a. PC statistical regression method

A principal component (PC) statistical regression
(Smith and Woolf 1976; Huang and Antonelli 2001;
Goldberg et al. 2003) was used on the AIRS–AMSU
radiances and GPS/RO refractivities. The PC statistical
regression is a least squares regression that uses prin-
cipal components (eigenvectors) for predictors (see
Goldberg et al. 2003). The single field of view (FOV)
University of Wisconsin—Madison International Mod-
erate Resolution Imaging Spectroradiometer (MODIS)/
AIRS Processing Package (IMAPP) (Huang et al. 2004;
Weisz et al. 2003, 2007) was modified to accommodate
the addition of AMSU and GPS/RO data (referred to
as the AIRS–AMSU–GPS/RO PC statistical regression
method). In the statistical regression method, a linear
relationship is assumed between the atmospheric state
vector [X (nl, ns), deviation from the mean value] and
the measurements [Y (ns, nd), deviation from the mean
value]: X � CYT, where C (nl, nd) is the matrix of the

regression coefficients, nl stands for the number of lev-
els, ns is the number of samples in the training dataset,
and nd is the dimension of the measurements (the num-
ber of independent pieces of information, which is the
sum of the number of AIRS and AMSU channels plus
the number of GPS levels in our study). In the PC
statistical regression the following relationship is used
instead:

X � CAT, �1�

where the dimension of C is now (nl, npc) and

A � YU. �2�

The A (ns, npc) stands for the matrix of compressed
measurements, which are commonly called projection
coefficients or PC scores, T stands for the matrix trans-
position, npc is the number of eigenvectors of the mea-
surements, and U (nd, npc) is the matrix containing the
first few (npc) eigenvectors of the covariance matrix of
Y. In the least squares solution, the minimization of
�(X � CAT)2 results in the regression coefficients C:

C � XtrAtr�Atr
TAtr�

�1, �3�

where tr refers to training data and �1 stands for the
matrix inversion. The atmospheric state vector (Xtr) in-
cludes temperature and moisture profiles at 101 pres-
sure levels from 0.005 to 1100 hPa and the surface pres-
sure of collocated radiosonde measurements, while the
measurements (Y) in Atr include the collocated AIRS
radiances, the atmospheric-sensitive (channels 6–14)
AMSU-A BTs, and GPS/RO refractivity profiles. Then
the atmospheric parameters (Xretr) are retrieved ac-
cording to

Xretr � CAobs
T , �4�

where Aobs is the matrix of the compressed observa-
tions of the test data.

Earlier studies on AIRS data showed that 30 eigen-
vectors calculated from the covariance matrix of AIRS
radiances simulated from the training dataset were suf-
ficient for retrieval purposes. In this study we also used
30 eigenvectors (principal components) associated with
the largest eigenvalues to reduce the dimension of the
regression problem and to stabilize the inverse of the
predictor matrix (A) in Eq. (3). The same 1688 National
Oceanic and Atmospheric Administration/National
Environmental Satellite, Data, and Information Service
(NOAA/NESDIS) preselected AIRS channels were
used in this study as are used in the AIRS IMAPP
software. Measurements from atmospheric-sensitive
AMSU-A channels (6–14) were also used. GPS/RO re-
fractivity profiles with 200-m vertical resolution be-

FIG. 2. AIRS, AMSU, GPS/RO, and raob collocations under
(top) all (5336 collocations) and (bottom) clear-sky (973 colloca-
tions) conditions.
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tween only 8- and 26-km height were used. The IMAPP
algorithm (Weisz et al. 2007) includes a brightness tem-
perature (6 categories) and a scanning angle classifica-
tion (with 11 categories); these classifications were not
included for the real data coefficient determination as
the collocated training dataset was too small (650 pro-
files).

Temperature retrievals with and without GPS/RO
refractivity data were compared to 164 (PREPQC) ra-
diosonde profiles.

b. PC statistical regression method using calculated
measurements for training

In our earlier study, the PC regression coefficients
were generated from simulated AIRS, AMSU, and
GPS/RO data to study the influence of random noise.
The so-called SeeBor (Seemann–Borbas) training data
(Borbas et al. 2005) were used; this dataset includes
over 12 000 clear-sky atmospheric temperature, mois-
ture, and ozone profiles assigned with realistic surface
properties (e.g., emissivity and skin temperature).

The stand-alone radiative transfer algorithm
(SARTA) forward model (Strow et al. 2003) V1.06 was
used to calculate AIRS radiances from the training
dataset. Prelaunch determinations of noise equivalent
delta temperatures (NEDTs) for the AIRS and
AMSU-A channels were used to generate Gaussian
random noise. AMSU temperatures were calculated us-
ing a microwave adaptation of pressure-layer optical
depth/pressure-layer fast algorithm for atmospheric
transmittances (PLOD/PFAAST) (Hannon et al. 1996)
based on line-by-line calculations with the Millimeter-
wave Propagation Model (MPM) (Liebe et al. 1993).
GPS/RO refractivity profiles between 8 and 26 km with
200-m vertical resolution were calculated using the ap-
proach described in Borbas et al. (2003); this approach
is based on the Healy and Eyre (2000) method and the
Kursinski et al. (1997) error estimations. Regression
coefficients were generated for calculated AIRS radi-
ances, AMSU brightness temperatures, and GPS/RO
refractivity profiles against the temperature, moisture,
and ozone profiles and surface parameters like surface
temperature, surface pressure, IR surface emissivity,
and reflectivity.

Inspection of real and synthetic regression coeffi-
cients in combined AIRS–AMSU–GPS/RO PC statis-
tical regressions showed that synthetic coefficients did
not produce better results. Thus the study presented in
section 5 used regression coefficients established with
real measurements. In section 6, the ARM best esti-
mate comparisons used synthetic coefficients estab-
lished with calculated measurements to increase the
training sample size.

c. Combined temperature retrievals using Bayesian
estimation

The Bayesian estimation (see, e.g., Lorenc 1986) was
also used to combine the already retrieved AIRS–
AMSU and GPS/RO temperature profiles. This
method allows us to investigate the impact of GPS/RO
data on the operational AIRS L2 products.

In the Bayesian estimation, minimization of the fol-
lowing cost function (J),

J�t� �
1
2

�t � t1�TA�1�t � t1� �
1
2

�t � t2��1B�1�t � t2�,

�5�

yields the combined temperature profiles (t) from
AIRS–AMSU temperature profile retrievals (t1) and
the operational GPS/RO temperature profiles (t2).
GPS/RO temperature profiles were previously interpo-
lated to the 101 pressure levels. Since only GPS/RO
data between 8 and 26 km were used, the interpolation
yields GPS/RO data at pressure levels between 23 and
286 hPa.

In Eq. (5), A (101, 101) and B (36, 36) are the error
covariance matrices of combined AIRS–AMSU tem-
perature profile retrievals (t1) and GPS/RO tempera-
ture profiles (t2), respectively. Both A and B (both sym-
metric and positive definite) are computed from the
training dataset including collocated radiosonde pro-
files.

Minimizing the cost function gives the following:

A�1�t � t1� � B�1�t � t2� � 0, �6�

and then the combined temperature profile can be cal-
culated according to

t � �A�1t1 � B�1t2��A�1 � B�1��1. �7�

Bayesian estimation was used to combine the GPS/RO
temperature profiles with the AIRS–AMSU PC statis-
tical regression temperature retrievals and also with the
operational AIRS L2 support temperature retrieval
products (referred to as the operational AIRS L2 prod-
uct; Aumann et al. 2005). The operational AIRS L2
products are derived by a physical inversion scheme
with 100 pressure levels using cloud-cleared radiances
on the AMSU footprint (which is covered by a 3 � 3
matrix of AIRS footprints); details regarding the op-
erational AIRS L2 algorithm can be found in Susskind
et al. (2003, 2006).

4. Cloud masking and reducing the number of
channels

Building upon several cloud masks (Ackerman et al.
1998), the following criteria were used to detect the
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presence of clouds. Clouds were assumed when mea-
sured spectra had 10 or more channels with brightness
temperature differences greater than 7 K with respect
to brightness temperatures calculated from collocated
raob profiles. The effect of cloud screening is illustrated
in Fig. 3.

In addition to the cloud mask, we also looked at the
number of channels to use in our study. Direct assimi-
lation of radiances in the NWP model requires some
channel selection. We also create subsets of the avail-
able channels to study NWP-like information content.
The AIRS–AMSU PC statistical regression retrievals
from 1688 AIRS channels have been compared to
AIRS–AMSU PC statistical regression retrievals from
394 optimally selected channels (see Fig. 4) that are
used in an AIRS physical retrieval method (Wu et al.
2005). Using 1688 channels in the PC regression
method improves temperature retrievals below 300 hPa

by 0.15 K. For tropopause studies, 394 channels would
be adequate.

5. Results

a. The PCA statistical regression retrieval method

Bias and RMS differences of the AIRS–AMSU–
GPS/RO (GPS refers to CHAMP or SAC-C depending
on the data collocation) combined PC statistical regres-
sion retrievals (solid), AIRS–AMSU retrievals (dash),
and GPS/RO retrievals (dot) against radiosonde mea-
surements are shown in Fig. 5, where the black solid
line on the right-hand panel represents the differences
in RMS (positive values indicate positive impact using
GPS/RO data in the retrieval method). AIRS–AMSU
only and GPS/RO only have comparable RMS differ-
ences w.r.t. raobs, and the combination shows a positive
impact between 100 and 300 hPa with two peaks: one
around 200 hPa with a maximum of 0.5 K and one
around 270 hPa with a maximum of 0.7 K. AIRS–
AMSU–GPS/RO retrievals outperform GPS/RO-only
and AIRS–AMSU-only retrievals because of the
complementary nature of these measurements.

b. Results using a Bayesian technique to combine
AIRS–AMSU and GPS/RO temperature profiles

The impact of GPS/RO data on AIRS–AMSU re-
trievals was also investigated using the Bayesian esti-

FIG. 3. Observed AIRS BTs at 1688 selected channels under
(top) all and (bottom) clear-sky conditions.

FIG. 4. Effect of channel selection on AIRS–AMSU statistical
retrievals: (left) bias (thin) and RMS (thick) differences of AIRS–
AMSU retrieval using 1688 (solid) vs 394 (dashed) AIRS channels
against raob data; (right) difference of the two RMS profiles (1688
channels minus 394 channels).
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mation (discussed in section 3c) to combine the retriev-
als and GPS/RO profiles. This approach is independent
of the PC statistical regression retrieval technique and
allows us to investigate the impact of GPS/RO data
on the operational AIRS L2 products that are derived
by an advanced physical regression retrieval scheme.
The Bayesian estimation method was applied for each
level where both AIRS–AMSU and GPS/RO profiles
were found. The operational AIRS L2 products were
selected from the 100 pressure level support products.
Figure 6 shows the combined operational AIRS L2
and GPS/RO products; results are improved by 0.5 K at
250 and 180 hPa when compared with radiosonde mea-
surements and GPS/RO has a positive effect almost
everywhere where it was included (between 20 and 300
hPa).

Figure 7 shows the outcome of applying the Bayesian
estimation method to the AIRS–AMSU PC statistical
regression profiles. Similar results are shown: the GPS/
RO data improved the AIRS–AMSU PC statistical re-
gression retrievals, but now the maximum improve-
ment is 0.7 K around 250 hPa. The improvement is
larger for the PC statistical retrievals because these re-
trievals show larger errors with respect to the radio-
sonde than the operational AIRS L2 retrievals.

In Fig. 8, application of the Bayesian estimation
method on AIRS–AMSU statistical retrievals and GPS/
RO data is compared with the AIRS–AMSU–GPS/RO

PC statistical retrievals on the same test dataset. The
two methods produce very similar results—the two ap-
proaches are not distinguishable in this study.

In Fig. 9 the AIRS–AMSU PC statistical regression
retrievals combined with GPS/RO via the Bayesian es-
timation method are compared with the operational
AIRS L2 products combined with GPS/RO via the
Bayesian estimation method; note that between 300
and 500 hPa only AIRS–AMSU data are used. Using
the Bayesian estimation method on the operational
AIRS L2 temperature products and GPS/RO profiles
produces RMS differences w.r.t. raobs that are 0.2 K
smaller than when used on AIRS–AMSU PC regres-
sion retrievals and GPS/RO data. This outcome is likely
due to the higher quality of the operational AIRS L2
products as compared to the AIRS–AMSU PC statis-
tical regression retrievals.

6. Validation over the SGP and NSA ARM sites

The AIRS–AMSU plus GPS/RO results were vali-
dated against the “best estimate of the atmosphere”
developed to validate the operational AIRS L2 prod-
ucts over the ARM program sites. Best estimate data
include atmospheric vertical profiles of pressure, tem-
perature, moisture, and surface parameters. These pro-
files of the atmospheric state are an ensemble of tem-

FIG. 6. (left) Bias (thin) and RMS (thick) differences of opera-
tional version-4 AIRS L2 products (dashed), GPS/RO tempera-
ture profiles (dotted), and the combination temperature retrievals
(solid) using the Bayesian estimation method in comparison with
raob measurements. (right) Difference of the original AIRS L2
product and combined profile RMS differences.

FIG. 5. (left) Comparison of only GPS/RO (dotted) and AIRS–
AMSU PC statistical regression retrievals with (solid) and without
(dashed) GPS/RO data with radiosonde measurements. Bias
(thin) and RMS (thick) differences are shown. (right) Difference
between the two RMS profiles (without GPS/RO minus with
GPS/RO).
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perature and moisture profiles created from two radio-
sondes launched within 2 h of the Aqua satellite
overpass times (see Tobin et al. 2006). Datasets from
the Southern Great Plains (SGP) central facility site in

Oklahoma and the North Slope of Alaska (NSA) site
near Barrow, Alaska, were used—over 800 samples at
the SGP site and about 400 collocations at the NSA
site. GPS/RO data between 8 and 26 km with 200-m
vertical resolution were used. The clear-sky cases were
selected manually by looking at the observed AIRS
brightness temperature spectra and the retrieved tem-
perature profiles. Figure 1 shows an example case over
the SGP site and illustrates the nature of these com-
parisons. Neither radiosonde nor GPS/RO measure-
ments are vertical; Fig. 1a illustrates the map of the two
radiosondes, which were used to create the best esti-
mate profile, the track of the GPS/RO measurement,
and the location of the AIRS FOV. Figure 1b gives a
three-dimensional illustration of the location of the ra-
diosonde and GPS/RO measurements. Figure 1c illus-
trates all available temperature profiles, including the
operational AIRS L2 retrieval, the best estimate pro-
file, AIRS–AMSU PC statistical regression retrievals
with and without GPS/RO data, and the GPS/RO tem-
perature profile. AIRS observed brightness tempera-
tures for this case are plotted in Fig. 1d.

Clear-sky GPS/RO collocation yielded 26 cases;
given the low number of clear-sky collocations, the
SGP and NSA sites were considered together in calcu-
lating the statistics. To benefit from a larger training

FIG. 7. (left) Bias (thin) and RMS (thick) differences of AIRS–
AMSU PC statistical retrievals (dashed), GPS/RO (dotted), and
the combination (solid) by the Bayesian estimation method com-
pared against raob measurements. (right) Difference of AIRS–
AMSU PC statistical retrieval and the combined profile RMS
differences.

FIG. 8. (left) Comparison of results using PC statistical regres-
sion (solid) vs Bayesian estimation method (dashed). Thin lines
stand for the bias and thick lines represent the RMS differences.
(right) Difference of the RMS profiles (PC statistical regression
minus Bayesian estimation method).

FIG. 9. Comparison of operational AIRS L2 (dashed) and PC
statistical regression AIRS–AMSU (solid) retrievals combined
with GPS/RO retrievals via Bayesian estimation method. Thin
lines stand for the bias and thick lines represent the RMS differ-
ences. (right) Difference of the RMS profiles (RMS of combined
GPS/RO and PC statistical regression retrievals minus RMS of
combined GPS/RO and AIRS L2 products).
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sample size, PC statistical regression retrievals in the
ARM site study used synthetic regression coefficients
that have global applicability. Figure 10 shows the bias
and RMS differences between AIRS–AMSU PC statis-
tical regression temperature retrievals with and without
GPS/RO data and the best estimate profiles. A positive
impact of 0.5 K between 100 and 450 hPa is consistent
with the earlier study using the PREPQC dataset.

Figure 11 shows two example collocations that dem-
onstrate positive and neutral impacts of GPS/RO data
on the temperature retrieval. Figure 11a shows tem-
perature retrievals (including combined AIRS–AMSU
PC statistical regression retrieval and operational AIRS
L2 products) that do not capture the tropopause as well
as the GPS/RO temperature and ARM best estimate
profiles. Figure 11b shows an example where adding
the GPS/RO data improves the PC statistical tempera-
ture retrieval at the tropopause.

7. Conclusions

In this paper, we show that the AIRS–AMSU tem-
perature retrievals have the largest improvement from
the inclusion of GPS/RO in the tropopause region—
about 0.5 K between 100 and 300 hPa. GPS/RO data
are found to provide valuable upper-tropospheric in-
formation that improves the AIRS–AMSU profile re-
trieval. The practical consequence of improved re-
trievals in clear skies from the combination of the
information contained in AIRS radiances and GPS re-
fractivities is that numerical weather prediction models
can be expected to show positive forecast impact from
the assimilation of both that exceeds the impact
achieved from assimilating either one alone.

We used combined temperature profile retrievals de-
rived by (i) a PC statistical regression method using
high–spectral resolution AIRS infrared measurements,
AMSU microwave measurements, and GPS/RO refrac-
tivity measurements, and (ii) a Bayesian estimation
method using AIRS–AMSU retrieved and the opera-
tional GPS/RO temperature profiles. The operational
AIRS L2 temperature products were also combined

FIG. 11. Temperature profile comparisons on two different days over the NSA ARM site: (left) 12 Sep
2003 and (right) 23 Sep 2002. The red curve indicates the ARM best estimate profile (ArmBe), the black
and the light blue curves represent the AIRS–AMSU PC statistical regression temperature retrieval
without GPS/RO data (AirsAmsuRtvl) and with GPS/RO data (AirsAmsuGpsRtvl), respectively, and
the green curve indicates the GPS/RO temperature profile [GPS/RO (SAC-C)].

FIG. 10. Validation of the AIRS–AMSU PC statistical tempera-
ture retrievals without (dashed) and with (solid) GPS/RO data
with the best estimate profiles at the SGP and NSA ARM sites.
(right) The difference of the two RMS profiles as the impact of
using GPS/RO data in the retrievals. Positive values indicate im-
provements. Synthetic coefficients were used in the regression
retrieval.
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with GPS/RO temperature profiles using the Bayesian
estimation method. These combined retrievals were
then validated with the NCEP PREPQC collocated ra-
diosonde measurements and ARM best estimate pro-
files. In this study, the two methods produced very simi-
lar results.
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