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A General Description

An Overview of the Processes and
Capabilites Associated with CBM-Z,
MOSAIC, and Aerosol-Radiation-
Cloud-Chemistry



Background

Explanation for Coding Style in WRF-chem

First A Brief History ...

* CBM-Z, Fast-J, and an early version of MOSAIC in WRF-chem
originated from the PEGASUS off-line chemical transport model

* Then, aerosol-radiation-cloud-chemistry interactions were added

* We are currently adding more capabilities, making modules more
generic, and trying to follow WRF coding guidelines

* Our overall motivation is to use the model to better understand the
local to regional-scale evolution of particulates and their effect on
radiation, clouds, and chemistry

For more information and updates:
* PNNL atmospheric sciences: www.pnl.gov/atmospheric/index.stm

* PNNL modules: www.pnl.gov/atmospheric/research/wrf-chem,
Including capabilities, current research, and publications



Trace Gas Chemistry

CBM-Z Mechanism for NOx-VOCs-oxidants

CBM-Z extends the CBM-IV to include reactive long-lived species and
their intermediates, isoprene chemistry, optional DMS chemistry, etc.

Lumped-structure approach for organic species and reactions

55 prognostic species and 134 reactions

Numerical integration uses RODAS ODE solver
Regime-dependent sub-mechanisms to reduce computational time
Dry-deposition velocities: series-resistance approach [Wesley, 1989]

Comparison with Smog-Chamber Data
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Tracer Option

Package for Transport and Mixing of Passive Scalars

* Emission, transport, vertical mixing, deposition only for chem_opt = 13
* Up to 6 tracers, hijack CO, NO, SO2, ALD, HCHO, ORAZ2 arrays
* Need to modify initial and boundary conditions for desired application

Computationally
efficient - multi-
month simulations
feasible

Used model to show
that transport pathways
during 2006 MILAGRO

field campaign were

similar to other years

. — .
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Photolysis

Fast-J Scheme for Photolysis Rates for Gas-Phase Photochemistry

* Photolysis rates for 23 reactions based on [Wild et al., 2000] depend on
predicted vertical profiles of ozone, aerosols, and clouds

* CBM-Z works with either FAST-J or TUV
* FAST-J and TUV have not yet been directly compared
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Aerosol Chemistry (1)

Model for Simulating Aerosol Interactions and Chemistry (MOSAIC)

e Sectional size representation (4 or 8 bins), 8 bin option requires 112
prognostic species

* Transfer of mass between bins uses either a two-moment approach
(default) or a moving center approach for the dynamic equations for
mass and number
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Aerosol Chemistry (2)

Aerosol Physics

Nucleation: Binary nucleation (H,SO, - H,O) of Wexler [1994] (default);
ternary nucleation option should not be used

Coagulation: Jacobson et al. [1994] with a Brownian kernel
Dry deposition: Binkowski and Shankar [1995] using wet size of particle

Nucleation and Coagulation new since version 2.1

Secondary Organic Aerosol Formation

None at present for MOSAIC

Rahul Zaveri has developed a box-model version of MOSAIC with SOA
treated similar to SORGAM is nearly complete and is expected to be
Implemented in WRF-chem this year

Other groups to implement SOA with WRF-chem ?



Aerosol Chemistry (3)
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Aerosol Chemistry (4)

Treatment of Aerosol Water in MOSAIC

In a Lagrangian framework, relatively straight-forward to keep track of
hydration history of aerosols, but ...

In an Eulerian framework, aerosols in different grid cells with different
hydration histories can mix together

All particles in a given bin are placed either on the lower or upper curve
of hydration hysteresis loop, using transported variable W,

Equimolar mixture of NaCl and Na,SO, at 298.15 K /
| Measurement: Tang [1997] /

—e&— Particle growth /
—6&— Particle evaporation NaCl .- /

A good treatment for
aerosol water is needed
since it has a profound
effect on aerosol optical

properties

Mass Growth Factor (MGF)
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Aerosol Optical Properties

General Description and Assumptions

size and number distribution — by layer optical depth, t, —
composition - o r(jqctwe - . Ier - single scattering albedo, o, Sraodri;l/i?)\;le
aerosol water [UES €5 eory asymmetry factor, g

* Volume averaging approach to get refractive index

* 1, ®, and g function of wavelength, 300, 400 600, 1000 hm

° o,= K/ (k,+ k), kg and k, = scattering and absorption coefficients
* This summer: shell-core approach to be implemented
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Observed vs Simulated AOD

AOD (500 nm)

AOD during March 2006 for MILAGRO Field Campaign
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Observed Lidar vs Simulated
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Aerosol Direct Radiative Effects

General Description and Assumptions

size and number distribution — bt layer optical depth, 1, $
composition - r(ianrda:ctlve h Ier ‘ single scattering albedo, Sr %ritvl/ia\;]e
aerosol water oS eory asymmetry factor, g el

* (Goddard shortwave scheme utilizes aerosol optical properties at 11
wavelengths, but the they are zero in default WRF / WRF-chem

* Use Angstrom relationship to interpolate between 4 wavelengths from
optical property module to 11 wavelengths used in Goddard scheme

* Aerosols now account for scattering & absorption in Goddard scheme
e Effect of aerosols on longwave radiation not treated

Soon:
* Adapt CAM scheme (ra_sw_physics = 3) by replacing t, ®,, and g
computed from off-line monthly averaged aerosols with on-line values

e Compute 1, o,, and g for MADE / SORGAM using a similar volume
averaging approach employed by MOSAIC



Emissions

Treatment of Emissions Specific to CBM-Z or MOSAIC

Released Code:

* Sea-Salt: On-line computation based on 10-m speed
and water cells (no distinction of fresh & salt water)

Not in Released Code (Preliminary):

* Dust: On-line computation based on u., soil type
& moisture, land-use [Shaw et al., Atmos. Environ.]

* Volcanic and Biomass Burning: Add emission
rates manually to anthropogenic files

* Plume rise: Based on on-line stability and stack
parameters (T, D, V,), but hard-coded

In Progress:

* Biogenic: Waiting for MEGAN [Guenther et al., 2006]
to be implemented in WRF-chem by C. Wiedinmyer
(NCAR) and S. Chung (WSU) by July with species
compatible with CBM-Z. Bio_emiss_opt = 1 works (on-
line computation), but bio_emiss_opt = 2 (off-line
computation) requires user input

biogenic..



Cloud-Aerosol Interactions (1)

Cloud Droplet Number

e converted Lin et al. microphysics scheme (mp_physics=2) to a two-
moment treatment (mass & number)

_grid cell mean droplet number mixing ratio in layer k
- vertical diffusion

- droplet loss due to collision/coalescence & collection
- droplet loss due to evaporation

- droplet source due to nucleation

* cloud droplet number source determined by aerosol activation (for
meteorology-only runs a prescribed aerosol size distribution is used)

® droplet number and cloud water mixing ratio used to compute
effective cloud-particle size for computing cloud optical depth In
Goddard shortwave radiation scheme (ra_sw_physics=2)



Cloud-Aerosol Interactions (2)

Activation and Resuspension

activation resuspension
Interstitial =——> cloud-borne —— interstitial

Kdhler Curves
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Cloud-Aerosol Interactions (3)

Autoconversion

autoconversion = coalescence of cloud droplets to form embryonic
rain drops

replaced autoconversion parameterization employed by Lin et al.
microphysics (mp_physics=2) with Liu et al. [2005] parameterization
2 adds droplet number dependence
2 physically based w/o tunable parameters
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Cloud-Aerosol Interactions (4)

Agqueous Chemistry

* Bulk cloud-chemistry module of Fahey and Pandis [2001]]
* Oxidation of S(IV) by H,O,, O,, trace metals, and radical species
* Non-reactive uptake of HNO;, HCI, NH; and other trace gases

* Bulk mass changes partitioned among cloud-borne aerosol size bins,
followed by transfer of mass & number between bins due to growth

Vertical Cross-Section Though Power Plant SO, Plume
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Cloud-Aerosol Interactions (5)

Scavenging

aerosols & dissolved trace gases:
1st-order removal rate same as rate
of cloud water conversion to
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scavenged aerosdls and gases are assumed
to be instantly removed (wet deposited)



First Indirect Effect

/)10

‘clean’ ‘polluted’

* Influence of cloud optical depth through impact on effective radius,
with no change in water content of cloud



Second Indirect Effect

‘polluted’

* Influence of cloud optical depth through influence of droplet number
on mean droplet size and hence Initiation of precipitation



Semi-Direct Effect

‘clean’ ‘polluted’

* Influence of aerosol absorption of sunlight on cloud liquid water and
hence cloud optical depth



Interactions Not-Treated

First Dispersion Effect: Influence on cloud optical depth through
Influence of aerosol on dispersion of droplet size distribution, with no
change in water content of cloud

Second Dispersion Effect: Influence on cloud optical depth through
Influence of aerosol on dispersion and hence Initiation of precipitation

Glaciation Indirect Effect: Influence of aerosol on conversion of
haze and droplets to ice crystals, and hence on cloud optical depth
and initiation of precipitation
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