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Executive Summary 

The current Weather and Research Forecasting (WRF) Software Framework (WSF) supports two 
dynamical solvers: the Advanced Research WRF (ARW) and the Nonhydrostatic Mesoscale 
Model.  The goal of the WRF Core Test was to determine the impact of these dynamical solvers 
on the forecast.  With this intent, parallel runs of WRF using the two dynamical cores were 
configured in a way to limit the configuration differences to those related to the dynamical 
solvers.  The retrospective runs produced for the WRF Core Test underwent both objective and 
subjective evaluation.  The DTC Core Test report focuses on the differences between the 
standard verification measures for the two dynamical cores.  Only the differences for which an 
assessment of statistical significance has been completed are discussed in this report.  The 
following points summarize the differences in the verification statistics for the two dynamical 
cores that are statistically significant and show consistency across season, physics package, and 
observational data type: 

• The ARW vector wind RMSE is less than the NMM vector wind RMSE in the 300-150 
hPa layer.  The magnitude of these differences also meets the criteria for concern. 

• Differences between the wind speed bias for the two dynamical cores indicate the upper 
level wind in the ARW forecasts are generally weaker than those in the NMM forecasts, 
whereas the lower level winds in the ARW forecasts tend to be stronger than those in the 
NMM forecasts. 

• The ARW temperature RMSE is less than the NMM temperature RMSE in the 400-200 
hPa layer.  Although the differences in this layer show consistency across physics 
packages and observational data type, the magnitude of these differences decreases 
during the second 12 hours of the forecast.  The magnitude of the differences in this layer 
generally does not exceed the threshold for concern. 

• Differences between the temperature bias for the two dynamical cores indicate the ARW 
forecasts are generally colder than the NMM forecasts.  Both cores exhibit a negative 
temperature bias at lower levels that transitions to a positive bias at upper levels.  This 
vertical structure combined with the colder temperatures in the ARW forecasts leads to 
the magnitude of the temperature bias being smaller for the NMM at lower levels and 
smaller for the ARW at upper levels. 
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• The relative humidity RMSE differences did not exhibit any statistically significant 
signature that was consistent for both physics packages.  On the other hand, a number of 
the differences for phase 2 and one difference for phase 1 that were found to be 
statistically significant did exceed the thresholds for concern and serious concern.  The 
ARW relative humidity RMSE was smaller than that of the NMM for all of these cases. 

• Differences between the relative humidity bias for the two dynamical cores indicate the 
ARW forecasts are generally associated with lower values of relative humidity than the 
NMM forecasts.  This tendency for lower relative humidity in the ARW forecasts can at 
least partially be explained by the tendency for the temperatures to be colder in the ARW 
forecasts. 

• Very few of the differences between the QPF verification measures for the two 
dynamical cores are statistically significant and show consistency for the two physics 
packages.  Only the bias differences at the lowest thresholds produce consistent 
statistically significant results.  The bias differences at the lowest thresholds indicate the 
NMM produces less overestimation of the areal coverage than the ARW.  On the other 
hand, all of these differences do not exceed the threshold for concern. 
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1. Introduction 

The current Weather and Research Forecasting (WRF) Software Framework (WSF) supports two 
dynamical solvers: the Advanced Research WRF (ARW, Skamarock et al. 2005) developed by 
the Mesoscale and Microscale Meteorology (MMM) Division of the National Center for 
Atmospheric Research (NCAR), and the Nonhydrostatic Mesoscale Model (NMM – Janjic 
2003a,b) developed by the National Centers for Environmental Prediction (NCEP).  WRF also 
offers a variety of physics packages.  Parallel runs of these two dynamic solvers are available 
from a variety of experiments (e.g., WRF Test Plan, Spring Program, DTC Winter Forecast 
Experiment, etc…Seaman et al. 2004, Kain et al. 2005, Bernardet et al. 2005), but the differences 
between these parallel runs can not be solely attributed to differences between the two dynamical 
cores because the dynamical solvers were not configured to use the same physical 
parameterizations and/or initial conditions.  The WRF Developmental Testbed Center (DTC) and 
the Global Systems Division (GSD) of NOAA’s Earth System Research Laboratory (ESRL) 
addressed the need for a controlled comparison of these two dynamical cores through intensive 
retrospective testing (i.e., parallel runs of the two dynamical solvers using initial and lateral 
boundary conditions based on the same input data, as well as the same suite of physics 
parameterizations).  The goal of the WRF Core Test was to determine the impact of the 
dynamical solvers on the forecast.  With this intent, parallel runs of WRF using the two 
dynamical solvers were configured such differences between the forecasts would be confined to 
those related to the dynamical solvers, at least within the limitations of the current end-to-end 
system.  This intensive testing provides much needed information for the upcoming dynamical 
core recommendation to be made by ESRL-GSD for the WRF Rapid Refresh to be run at NCEP. 

The parallel runs produced for the WRF Core Test underwent three basic types of evaluation: 
objective verification based on the standard verification measures, subjective case studies 
investigating systematic differences, and aviation-specific evaluation (both case studies and 
statistics) by the Product Development Teams (PDTs – Convective, Icing, Ceiling and Visibility, 
and Turbulence) of the Aviation Weather Research Program (AWRP).  This report focuses on 
the set-up of the experiment and the standard verification measures. 

2. Experiment Design 

2.1 Forecast Cycles 
The WRF Core Test focused on four month-long retrospective time periods corresponding to the 
four seasons: 

Summer: 15 July – 15 August 2005 

Autumn: 1 – 30 November 2005 

Winter: 15 January – 15 February 2006 

Spring: 25 March – 25 April 2006 

 

Twice daily (00 and 12 UTC cycles) 24-h forecasts for each retrospective period were generated 
on a 13-km grid for each dynamical core with output files every three hours.  For the 12 UTC 
cycle on 21 July 2005, the WSF auxillary output option was utilized to produce hourly output for 
a select subset of two-dimensional fields to meet the needs of the Convective AWRP PDT.   
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Forecast cycles for which the end-to-end system was not able to run to completion are 
summarized in Appendix A.  Only 22 of the potential 252 forecast cycles were not able to run 
completely from initialization to verification.  Fourteen of these incomplete cycles were related 
to missing input data.  Only four of the incomplete cycles were the result of the model failing to 
produce a 24-h forecast.  These forecast failures are still under investigation.  The four remaining 
cycles encountered problems in the post-processing stage due to small soil moisture values.  The 
verification results discussed in section 3 are based on only those forecast cycles for which the 
end-to-end system ran to completion for both dynamical cores and both physics package 
configurations. 

2.2 Input data 
The same gridded data were used to generate initial and lateral boundary conditions for each 
dynamical core.  RUC13 grids were used to produce the initial conditions (ICs), whereas 
NAM212 grids were used to produce the lateral boundary conditions (LBCs).  This mixture of 
input data was chosen because RUC13 grids were not available out to 24 hours for all of the 
retrospective time periods.  To maintain consistency between the RUC13 ICs and NAM LBCs, 
the NAM grids from the prior 06 UTC and 18 UTC cycle were used to produce LBCs for the 12 
UTC and 00 UTC forecast cycles, respectively.  In addition, the sea surface temperature (SST) 
field for the forecasts was obtained from NCEP’s daily, real-time, SST product, which is 
produced on a one-twelfth degree latitude-longitude grid using a two-dimensional variational 
interpolation analysis of the most recent 24-hours ship and buoy data, satellite-retrieved SST 
data, and SSTs derived from satellite-observed sea-ice coverage.  Although the end-to-end 
system used for this testing did not include a data assimilation component, the RUC13 cloud 
fields were included in the initial conditions, so the runs considered in this study are not truly 
cold start forecasts.   

2.3 Domains 

The ARW offers three map-projection options: Lambert-conformal, polar stereographic or 
Mercator, whereas the NMM uses a rotated latitude-longitude map projection.  Hence, the two 
dynamical cores can not be run on an identical grid.  The Lambert-Conformal map projection 
was used for the ARW runs considered in this study.  The domain for each core was selected 
such that it fit within the RUC13 domain, while attempting to minimize the following differences 
between domain characteristics for each core: the number of grid points, the range of grid 
spacing across the domain, and the locations of the lateral boundaries (see Fig. 1).  For the 
selected domains, the number of computational grid points differs by 0.014% (i.e., the ARW 
domain has 0.014% more computational grid points than the NMM domain).  The range of grid 
spacing for the ARW is 12.68 to 13.47 km, whereas the range for the NMM is 13.07 to 13.41 
km. 

The two dynamical cores also use different vertical coordinates.  Hence, the two cores could not 
be setup to run on identical vertical levels.  Both cores were configured to use 50 vertical levels 
with similar, but not identical, vertical spacing. 

2.4 Pre-Processing 
Each dynamical core has its own pre-processing software package, referred to as the Standard 
Initialization or SI.  The approaches to processing the input data are not necessarily the same in 
these two packages.  Hence, differences between the initial and lateral boundary conditions, as 
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well as the static fields (e.g. terrain height) that go beyond those stemming from differences in 
the grid projection/staggering for the two dynamical cores are possible.  The differences in the 
initial conditions are assessed by considering the differences between the verification statistics of 
the two dynamical cores at the initial time. 

The version of the NMM SI used for the WRF Core Test applies a 5-point smoother to the 30-
second terrain data during the domain localization process, whereas the ARW SI utilizes a 
method where the terrain is defined on four different successive grids and the degree of 
smoothing is controlled by two namelist parameters: SILAVWT_PARM_WRF and 
TOPTWVL_PARM_WRF.  The ARW terrain was created using SILAVWT_PARM_WRF=0 
and TOPTWVL_PARM_WRF=4 to generate a reasonable match between the terrain forcing for 
the two dynamical cores.  Figure 2 shows the difference between the terrain fields that were used 
in the retrospective forecasts. 

2.5 Model 
The inherent differences between the numerics for the two dynamical solvers dictate using 
different time-steps for the same grid spacing.  The time-steps selected for the WRF Core Test 
are based on recommendations from the respective developers, as well as real-time runs of each 
dynamical core leading up to the start of the retrospective runs.  The NMM used a time-step of 
30 s, whereas, the ARW used a large time-step of 72 s and a small time-step of 18 s.  In the 
interest of maintaining consistency between the two dynamical core configurations, the physics 
routines were called at the same frequency when possible, and close to the same frequency when 
an exact match was not possible.  Both cores called the radiation package every 30 minutes, 
whereas the ARW called the remaining physics packages every large time step (72 s) and the 
NMM called these packages every other time step (60 s).  An exact match for the non-radiation 
physics packages was not possible because the ARW solver currently does not offer an option to 
call the microphysics package less frequently than every time step. 

The ARW solver also offers a number of run-time options for the numerics, as well as various 
filter and damping options (Skamarock et al 2005).  The ARW was configured to use the 
following numeric options: 3rd-order Runge-Kutta time integration, 5th-order horizontal 
momentum and scalar advection, and 3rd-order vertical momentum and scalar advection.  In 
addition, the ARW was configured to use the following filter/damping options: three-
dimensional divergence damping (coefficient 0.1), external mode filter (coefficient 0.01), off-
center integration of vertical momentum and geopotential equations (coefficient 0.1), vertical-
velocity damping, and a 5-km-deep diffusive damping layer at the top of the domain (coefficient 
0.02). 

Each dynamical core was run with the same physics package configuration.  Two physics 
package configurations were considered: 

 Phase 1 Phase 2

Microphysics: Ferrier Thompson 

Planetary Boundary Layer: Mellor-Yamada-Janjic Mellor-Yamada-Janjic 

Convection: Betts-Miller-Janjic Grell-Devenyi 

Land-Surface Model: Noah (option 99) RUC 
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Beyond the physics packages, the same basic configuration was used for both phase 1 and phase 
2 of the testing, except that the phase 2 runs utilized the microphysics option mp_zero_out with 
the threshold set to 1e-12.  The version of this option used in the phase 2 runs sets negative water 
vapor values to zero and all moist array values that fall below the specified threshold to zero. 

2.6 Post-Processing 
The WRF-POST (Chuang et al. 2004), developed at NCEP, was used to post-process the 
retrospective forecasts.  The output for each dynamical core was interpolated from their 
respective native horizontal grid to the non-staggered RUC13 grid.  Points of the RUC13 grid 
that fell outside the WRF grids were filled with missing values.  Three types of post-processed 
files were produced for this experiment: 1) three-dimensional fields on constant pressure levels 
and two-dimensional fields, 2) three-dimensional fields on the model native vertical levels, and 
3) two-dimensional fields.  The files containing the pressure-level and two-dimensional fields 
were used to compute verification statistics and produce graphics, whereas the native level 
output was made available to the AWRP PDTs for evaluation using their own diagnostic tools. 

2.6 Verification 

2.6.1 Surface and upper air 
The retrospective forecasts were evaluated through objective verification of surface and upper air 
fields using the NCEP Verification System (Chuang et al. 2004).  The measures considered in 
this report are root-mean-square-error (RMSE) and bias.  The NCEP system employs a grid-to-
point verification approach in which forecast fields are bi-linearly interpolated to the observation 
location.  The system produces upper air verification statistics for radiosonde observations 
(temperature, relative humidity, and winds) at mandatory levels and aircraft observations 
(temperature and winds) for a number of layers.  Given the known errors associated with 
radiosonde humidity measurements at higher altitudes, our analysis of the upper air relative 
humidity verification statistics focuses on the levels between 850 and 500 hPa.  At the surface, 
forecasts of 2-m temperature and relative humidity and 10-m winds are compared to METAR 
observations.  The surface and upper air observations for this verification were obtained from 
RUC prepbufr files.  Verification statistics were computed for three different domains: CONUS, 
West, and East (see Fig. 3).  The CONUS verification domain is a Lambert-Conformal 
projection using the same parameters as the ARW computational domain with its outer limits 
defined to be 12 grid points in from the ARW domain boundary.  The West and East domains are 
sub-domains chosen to isolate the western mountainous region from flatter region in the eastern 
United States. 

An assessment of the statistical significance of the differences between the two dynamical core 
upper air verification statistics was carried out by Betsy Weatherhead and Greg Noonan of the 
Cooperative Institute for Research in the Environmental Science (CIRES) at the University of 
Colorado.  Their assessment of statistical significance utilizes a pairwise comparison that applies 
an auto-correlation correction (for more information on this analysis, see Weatherhead et al 
2006).  Significance testing was done for all three verification domains for the annual average 
and for each seasonal average.  For this report, the differences between the RMSE and bias for 
the two dynamical cores was considered statistically significant if the mean ± 4σ, where σ 
represents the standard error, did not include zero.  This criterion corresponds to a 99.9% 
confidence interval. 
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An assessment of the statistical significance of the differences between the two dynamical core 
surface verification statistics is not available at this time.  Hence, a discussion of the surface 
verification statistics is not included in this report.  A discussion of the surface verification 
results will be prepared as part of a separate report as soon as this statistical significance 
assessment is complete. 

2.6.2 Precipitation 

The precipitation forecasts were evaluated through objective verification using the NCEP 
Quantitative Precipitation Forecast (QPF) Verification System.  The measures considered in this 
report are Equitable Threat Score (ETS) and bias.  The NCEP system employs a grid-to-grid 
verification approach where the model forecast and observations are remapped to the same 
verification grid (Lin et al. 1999).  The Eta218 grid was used for this verification grid.  The 
package can compute verification statistics for 24-h and 3-h accumulations.  The NCEP/CPC 1/8 
degree daily precipitation analysis (accumulated from 12 UTC to 12 UTC) was used for 
verification of the 24-h accumulation, and the Stage-II national multi-sensor hourly precipitation 
analysis was used for verification of the 3-h accumulation.  Given the retrospective forecasts 
were only integrated out to 24 hours, verification for the 24-h accumulation was only possible for 
the 12 UTC forecast cycles. 

An assessment of the statistical significance of the differences between the two dynamical core 
QPF verification statistics for the CONUS 24-h accumulation was carried out by Tressa Fowler 
of NCAR’s Research Applications Laboratory (RAL).  An estimate of the uncertainity in the 
differences between the precipitation statistics for the two dynamical cores was obtained by 
applying a computer resampling method (Efron and Tibshirani 1994).  This method samples 
from the daily contingency tables of each core for each precipitation threshold with replacement. 
Because of the paired nature of the core comparison, the contingency tables for a single time are 
selected for both cores.  By accumulating the counts in the daily contingency tables over the 
entire period of interest, a single new contingency table for each core/threshold is derived. The 
statistics of interest (bias and ETS) are calculated from the contingency tables. The difference 
between these statistics for the two dynamical cores is accumulated. This process is repeated a 
large number of times (5000 in this case), yielding an empirical distribution of the difference in 
the statistics, from which the uncertainty in this difference can be estimated by finding the 
confidence bounds that separate 2.5% of the 5000 empirical samples into each tail. 

Although QPF verification statistics are available for the seasonal averages, the verification sub-
domains, and the 3-h accumulations, this report only discusses the results for the CONUS 24-h 
accumulation because an assessment of the statistical significance of the differences between the 
two dynamical cores for the other QPF verification statistics is not available at this time. 

2.6.3 Threshold criteria 

Prior to generating the retrospective runs and their corresponding error statistics, a guideline for 
error difference thresholds was proposed by Stan Benjamin.  These proposed thresholds were 
based on his group’s experience with RUC implementations and observation impact 
experiments.  The proposed thresholds, which are summarized in Table 1, are generally 
consistent with the formal statistical-significance thresholds in Benjamin et al. (2004).  
Differences that fall in the green category are considered insignificant.  Differences that fall in 
the yellow category are considered to be of concern.  And finally, differences that fall in the red 
category are considered to be of serious concern. 
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3. Verification Results 

3.1 Upper Air 
RMSE is a positive quantity.  Hence, the dynamical core with the smaller RMSE can be 
determined by simply subtracting one RMSE from the other and the sign of the difference 
indicates which dynamical core has the smaller RMSE.  On the other hand, bias can be positive 
or negative, which makes interpreting differences less straight forward.  Given forecast skill is 
the focus of this report (i.e., determining which dynamical core produces the bias of the smallest 
magnitude), the bias comparisons focus on which bias is smaller in magnitude.  To facilitate this 
comparison, the absolute value of each bias was used to compute the differences between the two 
dynamical cores (i.e., |ARW bias| - |NMM bias|).  All RMSE and bias differences were computed 
by subtracting the NMM verification measure from its ARW counterpart.  Hence, positive 
differences are associated with the NMM verification measure being smaller than that for the 
ARW, and negative differences are associated with the ARW verification measure being smaller 
than that for the NMM. 

3.1.1 Winds 

3.1.1.1 RMSE 

Forecast Hour 00 

The initial vector wind RMSE for both dynamical cores ranges from approximately 2 to 4 ms-1 
for the radiosonde data and 3 to 5 ms-1 for the aircraft data, with the largest RMSE occurring at 
upper levels (see Fig. 4a-b).  The initial conditions for the summer season generally have the 
smallest RMSE, whereas the initial conditions for the winter season generally have the largest 
RMSE.  Given the flow tends to be stronger in the winter season and the level of maximum 
RMSE for all seasons corresponds to the jet stream, this initial RMSE appears to scale with the 
strength of the flow.  The RMSE differences for both data sets exhibit the same basic overall 
trend with height (i.e., the ARW RMSE is smaller than that for the NMM at lower levels, 
transitioning to the ARW RMSE being larger than that for the NMM at upper levels), but the 
magnitude of the differences for the aircraft data is smaller at upper levels (see Fig. 4c-d).  The 
distinction can also be seen in the assessment of which differences are statistically significant.  
Most of the aircraft differences at upper are statistically significant, whereas only a few of the 
aircraft differences are statistically significant at these levels (see Fig. 4e-f).  All of the initial 
RMSE differences fall in the green category, except for the radiosonde differences above 250 
hPa, which meet the yellow criteria for all seasons except summer. 

Forecast Hour 12 
During the first 12 hours of the forecast, the vector wind RMSE increases at all levels, with the 
largest increase occurring at upper levels (see Fig. 5a-b).  Summer once again has the smallest 
overall RMSE and winter the largest.  The ARW RMSE is smaller than the NMM RMSE above 
300 hPa, which is opposite that found at the initial time (see Fig. 5c-d).  The RMSE differences 
for the radiosonde data at 200 hPa and the aircraft data in the 250-200 hPa layer are statistically 
significant for both phase 1 and 2, but only for the annual average, and the winter and spring 
(aircraft only) seasons (see Fig. 5e-f).  Most of these statistically significant differences also meet 
the yellow criteria.  The statistical significance of these differences also carries over to the 
verification sub-domains, except for the radiosonde winter season, which is only statistically 
significant for the East sub-domain (not shown). 
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The NMM RMSE is smaller than the ARW RMSE in the layer from 550 to 400 hPa (see Fig. 5c-
d).  The RMSE differences for the radiosonde data at 400 and 500 hPa are statistically significant 
for the annual average (phase 1 and 2), and summer (phase 1-500mb and 2) and spring (phase 2-
500 hPa) seasons, whereas the differences for the aircraft data in the 550-400 hPa layer are only 
statistically significant for the annual average (see Fig. 5e-f).  These RMSE differences all meet 
the green criteria.  The significance of these differences only carries over to the East sub-domain 
(not shown). 

The RMSE differences based on the radiosonde data suggest that the NMM RMSE also tends to 
be smaller than the ARW RMSE at 700 hPa (Fig. 5c), whereas the aircraft data suggest that the 
dynamical core with the smaller RMSE at this level depends on the season (Fig. 5d).  Only the 
differences for the radiosonde data show any statistical significance at this level and the 
significance of these differences show less continuity across phase, season, and sub-domain than 
the differences for the other two layers (Fig. 5e-f). 

Forecast Hour 24 
During the second 12 hours of the forecast, the vector wind RMSE continues to increase at all 
levels, with the largest increase once again occurring at upper levels (see Fig. 6a-b).  The ARW 
RMSE continues to be smaller than the NMM RMSE above 300 hPa (see Fig. 6c-d).  The 
significance of these differences is slightly more consistent across the seasons for the radiosonde 
data than 12 hours earlier (i.e., differences at 24 hours are also significant for spring phase 1 and 
close to significant for autumn phase 1 and 2), whereas only the phase 1 annual average is 
significant for the aircraft data (see Fig. 6e-f).  All of the significant differences for the 
radiosonde data once again meet the yellow criteria and this significance carries over to both 
sub-domains.  On the other hand, none of the aircraft differences in this layer meet the yellow 
criteria and the significance of this difference does not carry over to either sub-domain.  Below 
300 hPa, the core with the smallest RMSE now varies with season and physics package for both 
radiosonde and aircraft data.  Those differences that are statistically significant below 300 hPa do 
not exhibit any consistency between the two verification data sets. 

3.1.1.2 Bias 

Forecast Hour 00 
The initial wind speed bias for both dynamical cores is negative at all levels (see Fig. 7a-b).  The 
magnitude of the initial ARW bias is larger than that of the NMM above 400 hPa and below 700 
hPa, with the maximum difference occurring around 200 hPa (see Fig. 7c-d).  The initial wind 
speed bias differences in these layers are statistically significant (see Fig. 7e-f), which is also 
generally true for both verification sub-domains (not shown).  Only bias differences in the layer 
above 300 hPa meet the yellow criteria. 

Forecast Hour 12 

The wind speed bias 12 hours into the forecast remains negative for all seasons and physics 
packages except at the lowest and highest levels (see Fig. 8a-b).  Whether the negative bias is 
larger than that at the initial time depends on the level and the season.  The wind speed bias for 
the summer season exhibits the least variability with height, whereas the wind speed bias for the 
winter and spring seasons exhibits the largest variability with height.  The ARW tends to exhibit 
a larger negative bias in the layer 550-250 hPa, but the bias differences exhibit a seasonal 
dependence (see Fig. 8c-d).  Note that the difference profiles for 12 h do not show a strong 
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correlation to those at the initial time.  The statistical significance of the bias differences in the 
layer 400-250 hPa is the most consistent across phases, seasons and data type (see Fig. 8e-f), 
with a number of the differences in this layer meeting the yellow criteria.  On the other hand, the 
statistical significance of the differences at these levels does not consistently carry over to both 
sub-domains (not shown). 

The difference profiles for both the radiosonde and aircraft data suggest that the ARW tends to 
exhibit a smaller negative bias around 700 hPa (Fig. 8c-d), but none of these differences are 
statistically significant and all differences at this level meet the green criteria (Fig. 8e-f).  On the 
other hand, a number of the differences below 700 hPa and above 250 hPa are statistically 
significant and meet the yellow criteria.  However, the sign of the difference depends on the 
season at these levels (i.e., the dynamical core with the smallest magnitude wind speed bias 
depends on the season at these levels). 

Forecast Hour 24 h 
The overall characteristics of the wind speed bias 24 hours into the forecast are similar to those 
12 hours earlier except the negative bias at mid-levels has decreased slightly and the negative 
bias at upper levels has increased slightly (see Fig. 9a-b).  The strongest signal in the bias 
difference continues to be at upper levels (see Fig. 9c-f).  In the layer 250-200 hPa, the 
magnitude of the ARW bias is larger than that of the NMM, which corresponds to the ARW 
having a larger negative bias.  At 150 hPa, the magnitude of the ARW bias is smaller than that of 
the NMM, which corresponds to the ARW having a smaller positive bias.  This trend indicates 
the ARW winds at upper levels tend to be weaker than those in the NMM.  The statistical 
significance of the radiosonde differences at 200 and 250 hPa generally carries over to both sub-
domains for the annual average, but not for the radiosonde seasonal averages or any of the 
aircraft averages (not shown).  The statistical significance for the differences at 150 hPa does not 
carry over to both sub-domains for any of the averages (not shown).  Most of the statistically 
significant bias differences at 24 hours also meet the yellow criteria (Fig. 9e-f). 

The difference profiles for the aircraft data continue to suggest the ARW tends to exhibit a 
negative bias that is smaller than that for the NMM around 700 hPa, but the differences at this 
level for the radiosonde data are now centered on zero (Fig. 9c-d).  These differences continue to 
meet the green criteria and are not statistically significant for either data set (Fig. 9e-f). 

The difference fields in the lowest layer show more consistency across seasons and data type 
than 12 hours earlier, with summer being the sole outlier (Fig. 9c-d).  Note that, for the most 
part, all the seasons except for summer have a positive bias at this level.  Hence, the ARW tends 
to have a larger positive bias (all seasons except summer) and a smaller negative bias (summer) 
at this level, which would correspond to the lower level winds in the ARW tending to be stronger 
than that in the NMM.  The statistically significant differences at this level also tend to meet the 
yellow criteria (Fig. 9e-f). 

3.1.2 Temperature 

3.1.2.1 RMSE 

Forecast Hour 00 
The initial temperature RMSE for both dynamical cores generally decreases slightly with height 
up to about 300 hPa and then increases with height above this level (see Fig. 10a-b).  The aircraft 
RMSE is generally larger than the corresponding radiosonde RMSE and undergoes a larger 

 10



increase with height above 300 hPa.  Summer tends to exhibit the smallest RMSE and winter and 
autumn the largest.  The difference plots for both data types indicate the dynamical core with the 
smallest initial RMSE varies with height, with the NMM tending to have the smallest errors at 
lower and upper levels, and the ARW having the smallest errors at intermediate levels (see Fig. 
10c-d).  A number of these differences are statistically significant, with only the radiosonde 
differences above 250 hPa showing consistency across seasons (see Fig. 10e-f).  On the other 
hand, all of these differences fall well within the green criteria. 

Forecast Hour 12 
During the first 12 hours of the forecast, the temperature RMSE increases at all levels (see Fig. 
11a-b).  This increase is such that the initial minimum at intermediate levels becomes more 
pronounced at 12 hours.  Summer continues to have the smallest overall RMSE.  The ARW 
RMSE is generally smaller than the NMM RMSE in the 400-200 hPa layer (except spring at 400 
hPa), whereas the NMM RMSE tends to be smaller than the ARW RMSE in the 700-550 hPa 
layer (except phase 2 summer – see Fig. 11c-d).  The RMSE differences in the 400-200 hPa layer 
tend to be statistically significant for both phase 1 and 2, with the radiosonde differences 
showing the strongest consistency across season.  Conversely, the RMSE differences for the 700-
550 hPa layer are only statistically significant for phase 1, with the exception of the winter 
season for the aircraft data (see Fig. 11e-f).  The significance of these temperature RMSE 
differences does not always carry over to the West sub-domain (not shown).  Although the 
RMSE differences for the 400-200 hPa layer are the largest and exhibit the most consistent 
statistical significance across seasons and phases, only the radiosonde autumn differences at 200 
hPa meet the yellow criteria. 

Forecast Hour 24 
During the second 12 hours of the forecast, the temperature RMSE continues to increase at all 
levels, while maintaining a minimum at intermediate levels (see Fig. 12a-b).  The ARW RMSE 
continues to be smaller than the NMM RMSE in a layer between 400-250 hPa (see Fig. 12c-d) 
and the differences once again tend to be statistically significant for both phase 1 and 2 (see Fig. 
12e-f).  This statistical significance tends to carry over to both sub-domains (not shown), but the 
magnitude of the differences in this layer decreases over the second 12 hours of the forecast.  
Note that none of the differences in this layer meet the yellow criteria at this forecast time.  The 
NMM RMSE for phase 1 still tends to be smaller than the ARW RMSE in the layer 700-550 hPa 
and this difference is statistically significant for most seasons, but this signal definitely does not 
carry over to phase 2 at this forecast time.  The biggest change in the RMSE differences occurs 
at low levels.  The ARW RMSE is now smaller than the NMM RMSE for all seasons and phases 
except summer for the aircraft data.  The magnitude of the differences in this layer has generally 
increased, and the number of differences that are statistically significant has increased.  When 
considering the verification sub-domains, the statistical significance of these low-level RMSE 
differences are more likely to carry over to the West/East sub-domain than the East/West sub-
domain for the radiosonde/aircraft data (not shown). 

3.1.2.2 Bias 

Forecast Hour 00 

The initial temperature bias for both dynamical cores is, for the most part, negative below 300 
hPa and positive above 300 hPa, with the exception that the sign of the bias at the lowest levels 
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depends on the observational data type (see Fig. 13a-b).  Although the differences between the 
initial biases of the two dynamical cores tend to be statistically significant, the differences are 
rather small (i.e., all differences fall well within the green criteria) and tend to lack sign 
consistency across season and observational data type (see Figs. 13c-f). 

Forecast Hour 12 
During the first 12 hours of the forecast, the positive temperature bias at upper levels increases 
for both dynamical cores (see Fig. 14a-b).  This behavior is consistent across all seasons and 
physics packages.  On the other hand, the evolution of the negative temperature bias at 700 hPa 
shows more dependence on the season and physics package.  The ARW temperature bias 
generally undergoes a larger increase than the NMM and the increase is generally larger for both 
dynamical cores when run with phase 1 physics.  The magnitude of the ARW temperature bias 
tends to larger than the NMM bias below 500 hPa (one exception is summer, for which the ARW 
bias is only larger than the NMM bias around 700 hPa), whereas it tends to be smaller than the 
NMM bias above 300 hPa (see Fig. 14c-d).  This transition in the bias difference stems from the 
fact that the ARW tends to be colder than the NMM at all levels.  These temperature bias 
differences tend to be statistically significant for most of the seasons at all levels except the 
lowest (see Fig. 14e-f).  The layers for which the bias differences exhibit the most consistency 
across seasons (including both sign and statistical significance) are 300-200 hPa (ARW bias 
smaller than NMM) and 800-500 hPa (NMM bias smaller than ARW).  The differences in the 
lower layer tend to fall in the yellow category, whereas the differences in the upper layer tend to 
fall in the yellow to red categories.  The statistical significance of the differences in these two 
layers generally carries over to the verification sub-domains (not shown). 

Forecast Hour 24 
The temperature bias profiles at 24 hours are very similar to those at 12 hours, with the negative 
bias at 700 hPa increasing slightly over the second 12 hours of the forecast (see Fig. 15a-b).  The 
difference profiles for the temperature biases are also very similar to that at 12 hours, except that 
the differences in the 800-500 hPa layer are slightly larger and summer phase 1 now follows the 
profiles for the other seasons more closely than the profile for summer phase 2 (see Fig. 15c-d).  
These temperature bias differences once again tend to be statistically significant for most of the 
seasons at all levels except the lowest (see Fig. 15e-f), with the layers exhibiting the most 
consistency across season once again being 300-200 hPa (ARW bias smaller than NMM) and 
700-500 hPa (NMM bias smaller than ARW).  On the other hand, more of the differences in the 
lower layer now fall in the red category, whereas the differences in the upper layer tend to fall 
more in the yellow category.  The statistical significance of the differences for the lower layer 
generally carries over into the verification sub-domains, whereas the significance of differences 
for the upper layer is less likely to carry over to both sub-domains for the seasonal averages (not 
shown). 

3.1.3 Relative Humidity 

3.1.3.1 RMSE 

Forecast Hour 00 
The relative humidity RMSE at the initial time increases slightly with height for both dynamical 
cores, with the summer season exhibiting the largest overall variability with height (see Fig. 
16a).  The ARW RMSE is generally larger than the NMM RMSE, with the difference being the 
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largest at 500 hPa (see Fig. 16c).  Only the RMSE differences at 500 hPa are statistically 
significant across all seasons (see Fig. 16e).  All of the initial RMSE differences fall in the green 
category. 

Forecast Hour 12 
During the first 12 hours of the forecast, the relative humidity RMSE increases at all levels such 
that the vertical distribution of the errors remains basically the same as that at the initial time (see 
Fig. 17a).  On the other hand, the differences between the two dynamical cores have undergone a 
marked change.  The ARW RMSE now tends to be smaller than the NMM RMSE for the lowest 
two levels (see Fig. 17c), but these differences are only statistically significant for phase 2 (see 
Fig. 17e).  The NMM RMSE tends to be smaller than the ARW RMSE at 500 hPa, but only the 
difference for summer phase 2, for which the ARW RMSE is actually smaller than the NMM 
RMSE, is statistically significant.  Most of the statistically significant RMSE differences at this 
time also meet the yellow criteria. 

Forecast Hour 24 
During the second 12 hours of the forecast, the relative humidity RMSE continues to increase at 
all levels, but the size of this increase is smaller than the first 12 hours (see Fig. 18a).  The 
RMSE differences at 24 hours exhibit more variability across seasons and physics packages than 
those at 12 hours, whereas the differences undergo a general shift such that the ARW RMSE 
shows a stronger tendency to be smaller than the NMM RMSE at all three levels (see Fig. 18c).  
On the other hand, these differences do not show consistent statistical significance across seasons 
and physics packages (see Fig. 18e). 

3.1.3.2 Bias 

Forecast Hour 00 
The initial relative humidity biases for both cores hover around zero at 850 hPa, progress toward 
small positive biases at 700 hPa for all but the summer season, and finally transition to all 
positive biases at 500 hPa (see Fig. 16b).  The magnitude of the NMM bias at 850 hPa is larger 
than that for the ARW, except for the autumn season, whereas the magnitude of the ARW bias at 
700 and 500 hPa is larger than that for the NMM, except for the summer season at 700 hPa (see 
Fig. 16d).  Most of these differences are statistically significant, but only those at 500 hPa tend to 
meet the yellow criteria (see Fig. 16f).  The statistical significance of the initial bias differences 
carries over to the sub-domains at 500 hPa and for the most part 700 hPa, whereas the behavior 
of the statistics at 850 hPa exhibit less consistency across the sub-domains (not shown). 

Forecast Hour 12 
The relative humidity biases at 12 hours are negative at 850 hPa and transition to positive at 500 
hPa, except for the summer season (see Fig. 17b).  For most seasons and levels, the magnitude of 
the ARW bias is larger than that for the NMM (see Fig. 17d).  Although not immediately 
obvious from the difference profiles, closer inspection reveals that the ARW relative humidity 
tends to be larger than that for the NMM at 700 and 500 hPa.  Note that the higher ARW relative 
humidity does not necessarily translate to the ARW being moister than the NMM because the 
tendency for the ARW to be colder than the NMM (see temperature bias discussion above) 
could, by itself, lead to the ARW relative humidity being higher than that of the NMM.  The 
differences at 850 hPa are only statistically significant for the annual and winter summer 
averages (see Fig. 17f), whereas the differences at 700 and 500 hPa are statistically significant 
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for a broader range of seasons, but the statistically significant differences are not all of the same 
sign.  Conversely, most of the statistically significant bias differences for relative humidity meet 
the red criteria. 

Forecast Hour 24 
During the second 12 hours of the forecast, the magnitude of the relative humidity bias increases 
slightly for most seasons and levels, while maintaining a vertical distribution similar to that 
found at 12 hours.  The magnitude of the ARW bias is, once again, generally larger than that for 
the NMM, with the exception of the phase 2 summer and annual averages at 700 and 500 hPa.  
These exceptions are once again consistent with a tendency for ARW relative humidity to be 
higher than that of the NMM at 700 and 500 hPa.  The 850 hPa differences are now only 
statistically significant for phase 2 annual and summer averages, whereas the 700 and 500 hPa 
differences are, once again, significant for a broad range of seasons for both phases, but not all of 
the same sign.  

3.2 Precipitation 
Both QPF verification measures (ETS and bias) are positive quantities.  The higher the ETS, the 
more skillful the forecast, whereas a bias of one is the most skillful.  All ETS and bias 
differences discussed below were computed by subtracting the NMM verification measure from 
its ARW counterpart.  Hence, a positive ETS difference means the ARW forecasts have more 
skill than the NMM forecasts, and a negative ETS difference means the NMM forecasts have 
more skill than the ARW forecasts.  Interpreting the bias differences is, once again, slightly more 
complicated.  Positive differences for biases greater than one indicate the NMM forecasts have 
more skill than the ARW forecasts, whereas positive differences for biases less than one indicate 
the ARW forecasts have more skill than the NMM forecasts.  A bold dotted line has been added 
to the bias differences plots indicating the transition from bias greater than one to less than one to 
facilitate interpreting the results. 

3.2.1 Equitable Threat Score 
The Equitable Threat Scores (ETS) for both dynamical cores and both physics packages are 
shown in Fig. 19a.  These scores indicate the skill of the forecasts for all four configurations is 
lower for higher thresholds, as would be expected.  Note that the skill of the forecasts at the 
lower thresholds show a stronger dependence on the physics suite than the dynamical core, with 
the phase 2 physics suite showing less skill than the phase 1 physics suite.  For phase 1, the 
ARW shows less skill than the NMM for all but the highest threshold, but only the difference for 
the lowest threshold is statistically significant (see Fig. 19c).  For phase 2, the ARW shows more 
skill for all but one of the thresholds (see Fig. 19e).  Only the differences for the lowest three 
thresholds are statistically significant for phase 2, all of which indicate the ARW has more skill 
that the NMM.  Hence, the dynamical core with the higher skill is opposite that for phase 1.  In 
addition, all of the ETS differences for both phase 1 and 2 fall well within the green category. 

3.2.2 Bias 
The bias for both dynamical cores is greater than one for the lower thresholds and decreases to 
less than one for the higher thresholds (see Fig. 19b).  Hence, the forecasts overestimate the areal 
coverage of the precipitation at the lower thresholds and underestimate the areal coverage at the 
higher thresholds.  Note that the bias also shows a stronger dependence on the physics suite than 
the dynamical core, with phase 2 physics having the higher bias for all thresholds.  For phase 1, 
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the ARW bias is greater than that of the NMM for all but the highest thresholds.  The transition 
from bias greater than one to less than one is such that the NMM has less overestimation of the 
areal coverage at the lower thresholds, more underestimation of the areal coverage at 
intermediate thresholds, and less underestimation at the highest thresholds (see Fig. 19d).  For 
phase 2, the ARW bias is, once again, greater than that of the NMM for the all but the highest 
thresholds.  The bias transition for phase 2 is such that the NMM produces a better estimate of 
the areal coverage for all thresholds (see Fig. 19f).  Only the bias differences for the lowest 
thresholds are statistically significant, all of which fall in the green category. 

4. Bulk Timing Statistics 
Bulk timing information was saved for each forecast cycle (i.e., the time from model start to 
model end, including all time for I/O operations).  This timing information was used to compute 
a ratio of the ARW runtime to the NMM runtime for each forecast cycle and then an average 
ratio was computed for each physics suite.  It should be noted that I/O timing for the two 
dynamical cores could have a significant impact on these bulk timing statistics since the number 
of fields written to the history files is not the same for the two dynamical cores.  In addition, for 
the phase 1 runs, the number of statements written to the log files was not equivalent for the two 
dynamical cores because the debug level controlled by the namelist was set differently for the 
two cores.  And finally, the mp_zero_out option was not working properly for the phase 2 runs, 
which ended up having a larger impact on the runtime for the ARW phase 2 runs because the 
NMM has a separate minimum value control in its module_physics_calls.f routine that gave the 
NMM core a computational advantage.  With these caveats in mind, the ARW/NMM timing 
ratios for the retrospective runs were 0.983 for phase 1 and 1.278 for phase 2.  The DTC plans to 
address the need to more precise timing statistics for the two dynamical cores in the coming 
months by producing runs that provide a breakdown of the timing required by each basic routine. 
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Table 1: Proposed threshold criteria.  Differences that fall in the green category are considered 
insignificant.  Differences that fall in the yellow category are considered to be of concern.  
Differences that fall in the red category are considered to be of serious concern. 

 Green Yellow Red 

Winds < 0.10 ms-1 0.10 to 0.25 ms-1 > 0.25 ms-1

Temperature < 0.1 K 0.1 to 0.2 K > 0.2 K 

Relative Humidity < 0.5% 0.5 to 1.0 % > 1.0% 

Equitable Threat Score < 0.03 0.03 to 0.05 >0.05 

Precipitation Bias < 0.1 0.1 to 0.25 >0.25 
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Figure 1: Map showing the boundaries of the computational domains used for the ARW (dashed 
line) and the NMM (dotted).  The solid line shows the boundaries of the domain for the RUC13, 
which was used to initialized the ARW and NMM forecasts. 
 

 
Figure 2: Contour plot showing the difference between the terrain field used in the ARW and 
NMM forecasts. 
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Figure 3: Map showing the boundaries of the verification domains: CONUS (solid black), West 
(solid red), and East (solid blue).  The computational domains used for the ARW (dashed line) 
and the NMM (dotted) are shown for reference. 
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Figure 4: Vector wind RMSE (m s-1) for the initial time (FH = 00 h): RMSE profiles for the 
radiosonde (a) and  aircraft (b) data sets, RMSE difference profiles for the radiosonde (c) and 
aircraft (d) data sets and RMSE differences that are statistically significant for the radiosonde (e) 
and aircraft (f) data sets.  All differences are ARW-NMM.  The shading in the lower four panels 
corresponds to the threshold criteria summarized in Table 1. 
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Figure 5: Same as 4 except for the vector wind RMSE for forecast hour 12 (FH = 12 h).
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Figure 6: Same as 4 except for the vector wind RMSE (m s-1) for forecast hour 24 (FH = 24 h). 
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Figure 7: Same as 4 except for the wind speed bias (m s-1) for the initial time (FH = 00 h).  All 
differences are computed using the absolute value of the average bias.  
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Figure 8: Same as 4 except for the wind speed bias (m s-1) for forecast hour 12 (FH = 12 h).  All 
differences are computed using the absolute value of the average bias. 

 24



 
Winds Bias
FH = 24 h

RAOB

100

200

300

400

500

600

700

800

900

1000
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Pr
es

su
re

 (m
b)

ARW_ph1_annual
NMM_ph1_annual
ARW_ph2_annual
NMM_ph2_annual
ARW_ph1_autumn
NMM_ph1_autumn
ARW_ph2_autumn
NMM_ph2_autumn
ARW_ph1_spring
NMM_ph1_spring
ARW_ph2_spring
NMM_ph2_spring
ARW_ph1_summer
NMM_ph1_summer
ARW_ph2_summer
NMM_ph2_summer
ARW_ph1_winter
NMM_ph1_winter
ARW_ph2_winter
NMM_ph2_winter

(a)

 

Winds Bias
FH = 24 h
ACARS

100

200

300

400

500

600

700

800

900

1000
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Pr
es

su
re

 (m
b)

ARW_ph1_annual
NMM_ph1_annual
ARW_ph2_annual
NMM_ph2_annual
ARW_ph1_autumn
NMM_ph1_autumn
ARW_ph2_autumn
NMM_ph2_autumn
ARW_ph1_spring
NMM_ph1_spring
ARW_ph2_spring
NMM_ph2_spring
ARW_ph1_summer
NMM_ph1_summer
ARW_ph2_summer
NMM_ph2_summer
ARW_ph1_winter
NMM_ph1_winter
ARW_ph2_winter
NMM_ph2_winter

(b)

Winds Bias |ARW|-|NMM|
FH = 24 h

RAOB

100

200

300

400

500

600

700

800

900

1000
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Pr
es

su
re

 (m
b)

ph1_annual
ph2_annual
ph1_autumn
ph2_autumn
ph1_spring
ph2_spring
ph1_summer
ph2_summer
ph1_winter
ph2_winter

(c) Winds Bias |ARW|-|NMM|
FH = 24 h
ACARS

100

200

300

400

500

600

700

800

900

1000
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Pr
es

su
re

 (m
b)

ph1_annual
ph2_annual
ph1_autumn
ph2_autumn
ph1_spring
ph2_spring
ph1_summer
ph2_summer
ph1_winter
ph2_winter

(d)

Winds Bias |ARW|-|NMM|
FH = 24 h

RAOB

100

200

300

400

500

600

700

800

900

1000
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Pr
es

su
re

 (m
b)

ph1_annual
ph2_annual
ph1_autumn
ph2_autumn
ph1_spring
ph2_spring
ph1_summer
ph2_summer
ph1_winter
ph2_winter

(e) Winds Bias |ARW|-|NMM|
FH = 24 h
ACARS

100

200

300

400

500

600

700

800

900

1000
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Pr
es

su
re

 (m
b)

ph1_annual
ph2_annual
ph1_autumn
ph2_autumn
ph1_spring
ph2_spring
ph1_summer
ph2_summer
ph1_winter
ph2_winter

(f)

 
Figure 9: Same as 4 except for the wind speed bias (m s-1) for forecast hour 24 (FH = 24 h).  All 
differences are computed using the absolute value of the average bias. 
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Figure 10: Same as 4 except for the temperature RMSE (K) for the initial time (FH = 00 h). 
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Figure 11: Same as 4 except for the temperature RMSE (K) for forecast hour 12 (FH = 12 h).  
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Figure 12: Same as 4 except for the temperature RMSE (K) for forecast hour 24 (FH = 24 h).  
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Figure 13: Same as 4 except for the temperature bias (K) for the initial time (FH = 00 h).  ).  All 
differences are computed using the absolute value of the average bias. 
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Figure 14: Same as 4 except for the temperature bias (K) for forecast hour 12 (FH = 12 h).  ).  All 
differences are computed using the absolute value of the average bias.  
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Figure 15: Same as 4 except for the temperature bias (K) for forecast hour 24 (FH = 24 h).  ).  All 
differences are computed using the absolute value of the average bias.  
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Figure 16: Relative humidity verification statistics (%) for the initial time (FH = 00 h): (a) 
RMSE and (b) bias profiles, (c) RMSE and (d) bias difference profiles, and statistically 
significant (e) RMSE and (f) bias differences.  The shading in the lower four panels corresponds 
to the threshold criteria summarized in Table 1.  All bias differences are computed using the 
absolute value of the average bias. 
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Figure 17: Same as 16 except for the relative humidity verification statistics for forecast hour 12 
(FH = 12 h).  
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Figure 18: Same as 16 except for the relative humidity verification statistics for forecast hour 24 
(FH = 24 h). 
 

 34



 
Equitable Threat Score

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.01 0.1 0.25 0.5 0.75 1 1.5 2 3

Threshold (inches)

ARW_ph1
NMM_ph1
ARW_ph2
NMM_ph2

(a) Bias

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.01 0.1 0.25 0.5 0.75 1 1.5 2 3

Threshold (inches)

ARW_ph1
NMM_ph1
ARW_ph2
NMM_ph2

(b)

ETS Difference (ARW-NMM)
Phase 1

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.01 0.1 0.25 0.5 0.75 1 1.5 2 3

Threshold (inches)

(c) Bias Difference ARW-NMM
Phase 1

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.01 0.1 0.25 0.5 0.75 1 1.5 2 3

Threshold (inches)

(d)

ETS Difference (ARW-NMM)
Phase 2

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.01 0.1 0.25 0.5 0.75 1 1.5 2 3

Threshold (inches)

(e)
Bias Difference ARW-NMM

Phase 2

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.01 0.1 0.25 0.5 0.75 1 1.5 2 3

Threshold (inches)

(f)

 
Figure 19: Precipitation verification statistics for 24-h accumulations: ETS (a), bias (b), 
difference between ARW and NMM ETS for phase 1 (c), bias for phase 1 (d), ETS for phase 2 
(e), bias for phase 2 (f) with 95% confidence intervals.  The shading in the lower four panels 
corresponds to the threshold criteria summarized in Table 1.  The bold dotted lines in panels (d) 
and (f) demarcate the transition from bias greater than one to bias less than one.
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Appendix A: Summary of Data Missing from WRF Core Test Archive 
Forecast cycle Missing Data Physics 

Package 
Reason for Missing Data 

Winter    
2006012600 NMM ph1 and ph2 forecast failed to complete 
2006012812 NMM and ARW ph1 and ph2 missing RUC input 
2006012900 NMM and ARW ph1 and ph2 missing RUC input 
2006020500 ARW ph2 forecast failed to complete 
2006021500 3-h QPF Verification ph1 and ph2 corrupt observation data 
2006021512 3-h QPF Verification ph1 and ph2 corrupt observation data 
Fall    
2005111012 NMM and ARW ph1 and ph2 missing RUC input 
2005110612 ARW ph2 forecast failed to complete 
2005111600 ARW ph2 forecast failed to complete 
Summer    
2005071712 NMM and ARW ph1 and ph2 missing RUC input 
2005072300 ARW post-processed 

files after fhr 03 
ph2 post-processor crash related 

to small soil moisture values 
2005072612 ARW post-processed 

files after fhr 21 
ph2 post-processor crash related 

to small soil moisture values 
2005072700 ARW post-processed 

files for fhr 24 
ph2 post-processor crash related 

to small soil moisture values 
2005072800 ARW post-processed 

files after fhr 21 
ph2 post-processor crash related 

to small soil moisture values 
Spring    
2006032500 NMM and ARW ph1 and ph2 corrupt RUC input 
2006032912 24-h QPF verification ph1 and ph2 missing RFC data 
2006040200 NMM and ARW ph1 and ph2 corrupt RUC input 
2006041300 NMM and ARW ph1 and ph2 missing NAM input 
2006041712 NMM and ARW ph1 and ph2 missing RUC input 
2006041800 NMM and ARW ph1 and ph2 missing RUC input 
2006042300 incomplete sfcupa 

verification 
ph1 and ph2 missing RUC prepbufr files 

2006042312 incomplete sfcupa 
verification / 24-h QPF 
verification 

ph1 and ph2 missing RUC prepbufr files 
/ missing RFC data 
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