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ABSTRACT

This article is one in a series describing the functionality of the global weather prediction

model FIM (for Flow-following, Finite-volume, Icosahedral) developed at NOAA’s Earth

System Research Laboratory. Emphasis in this particular article is on the design of the

vertical coordinate – the “flow-following” aspect of FIM. The coordinate is terrain-following

near the ground and isentropic in the free atmosphere. The spatial transition between

the two coordinates is adaptive and is based on the Arbitrary Lagrangian Eulerian (ALE)

paradigm. The impact of vertical resolution tradeoffs between the present hybrid approach

and traditional terrain-following coordinates is demonstrated in a three-part case study.
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1. Introduction

The last few decades have seen significant advances in numerical weather prediction

(NWP). The skill of today’s NWP models owes much to improved closure schemes for phys-

ical processes that are too short-lived or too small in scale to be resolved by a model’s

space-time mesh. Higher numerical accuracy, made possible primarily by faster computers

but to some degree by new techniques for solving partial differential equations, also had a

large impact on forecast skill.

Numerical accuracy is typically expressed in terms of the truncation or discretization

error, defined as the extent to which individual terms in a differential equation are misrep-

resented in a numerical model due to grid resolution limits. There are at least three ways

to reduce the truncation error: one can (1) refine the grid, (2) approximate spatial and

temporal derivatives in a more precise way, or (3) optimize the placement of grid points in

the space-time domain.

FIM, the flow-following, finite-volume, icosahedral NWP model recently developed by

NOAA’s Earth System Research Laboratory, takes advantage of recently developed ideas

about grid point placement – the third alternative just mentioned. Specifically, FIM uses

the icosahedron, a near-spherical body composed of 20 equilateral triangles, as a basis for

horizontal grid layout, while in the vertical it uses a coordinate with a strong Lagrangian

(hence “flow-following”) flavor. The focus of the present article is on the vertical coordinate

in FIM.
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2. History

Physical reasoning suggests that entropy or a variable related to it, such as buoyancy, is

the most appropriate candidate for a Langrangian vertical coordinate in modeling stratified,

quasi-adiabatic flow. The relationship between buoyancy and available potential energy

assures that isentropic coordinate layers cannot steepen without a source of energy; this

provides an important, though certainly not universal, safeguard against folding of coordinate

surfaces which would otherwise bring the simulation to a quick halt.

The advantages of analyzing atmospheric motion in the free atmosphere in an isentropic

reference frame have been thoroughly discussed in the literature starting with Rossby and

Collaborators (1937) (sic), Rossby (1940), and Kleinschmidt (1950). Their arguments need

not be repeated here. Likewise, the rationale for using isentropic coordinates in NWP models

has been laid out repeatedly [e.g., Eliassen and Raustein (1968), Bleck (1974), Hsu and

Arakawa (1990), Benjamin et al. (2004)]. The list of potential advantages of isentropic

modeling compiled by those and other authors is long, and there is not much we can add to

it at this time.

Isentropic NWP models came into being in the 1960s, but it is fair to say that “pure”

isentropic coordinate models (those that use entropy as vertical coordinate throughout the

model domain) have not withstood the test of time because of their inherent inability to

provide vertical resolution in unstably stratified air columns. Complexities associated with

coordinate-ground intersections also were, and continue to be, a deterrent to pure isentropic

coordinate modeling.

Early experiments with isentropic models were conducted to simulate baroclinic insta-
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bility with an eye on short-range weather prediction. Since modeling of diabatic forcing

was not essential in that context, the intersection of coordinate surfaces with the ground

– unavoidable in baroclinic flow – was regarded as the main numerical challenge. Eliassen

and Raustein (1968), in their pioneering work on primitive-equation isentropic modeling,

chose to track coordinate-ground intersections by solving an advection equation for surface

potential temperature θs,

∂θs

∂t
+ vs · ∇θs = 0. (1)

(Here, vs is the surface wind vector and ∇ is the 2-dimensional gradient operator.) Though

justifiable at the time, this strategy created a redundancy problem because isentropic coordi-

nate models typically contain a second equation predicting the location of coordinate-ground

intersections, namely, the continuity equation for isentropic layer thickness ∆p,

∂∆p

∂t
+ ∇ · (v∆p) = 0. (2)

To understand why this is so, one must keep in mind that the line marking the intersection

of an isentrope with the ground also marks the edge of the region where the thickness ∆p of

the coordinate layer beneath it is zero. The evolution of the ∆p field in the vicinity of the

intersection line therefore provides information about where the line is moving.

Obtaining accurate solutions of (2) in the transition region between zero and nonzero

∆p values is numerically challenging. Since the solution of (1) is subject to numerical errors

as well, the two equations do not always agree on where a coordinate surface intersects the

ground at any given time. The resulting discrepancies act at best as a source of model noise;

at worst, they lead to numerical instability.

The problem just described spawned attempts in the 1970s to improve the treatment of
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coordinate-ground intersections by inserting a set of terrain-following coordinate surfaces,

commonly referred to as σ surfaces (Phillips 1957), between the ground and the isentropic

domain (Deaven 1976; Uccellini et al. 1979; Friend et al. 1977; Bleck 1978b). In all these

schemes, with the exception of scheme D of Bleck (1978b), the two coordinate domains

overlap, i.e., coordinate surfaces belonging to one domain intersect those belonging to the

other. This requires interpolation. Scheme D, having no overlaps, leads to a particularly

simple set of model equations, making it easy to formulate them in rigorously conservative

form, but it has shortcomings of its own. The Uccellini et al. (1979) scheme and a variant of

Bleck’s scheme D are in use today in different versions of the University of Wisconsin global

model [Zapotocny et al. (1994), Schaak et al. (2004)].

The decade of the 1980s saw some progress in the related field of ocean circulation

modeling with an entropy-related vertical coordinate. Specifically, Bleck and Boudra (1981)

developed a coordinate system which is mainly isopycnic but allows coordinate layers to turn

into constant-thickness layers near the sea surface to overcome the massless layer problem

associated with modeling baroclinic ocean states. This may have been the first time that

ALE-like coordinates (Hirt et al. 1974) were used in geophysical modeling.

Increasingly skillful schemes for avoiding coordinate-ground intersections were developed

in the 1990s [Bleck and Benjamin (1993), Konor and Arakawa (1997), Johnson and Yuan

(1998), Webster et al. (1999)]. These more recent schemes resemble scheme D of Bleck

(1978b) in the sense that they avoid overlaps between a purely isentropic and a purely

isobaric or terrain-following subdomain. They differ among each other primarily in how

spatially abrupt they allow the transition between non-isentropic and isentropic coordinate

representation to be. Various aspects of these schemes will be discussed later in greater
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detail.

A parallel effort to build purely isentropic or isopycnic models free of the redundancy

implied by jointly solving (1) and (2) was brought to a conclusion [Bleck (1984), Bleck

and Boudra (1986)] with the advent of the Flux Corrected Transport algorithm (Boris and

Book 1973). This scheme for the first time yielded well-behaved solutions of the continuity

equation in transition zones between zero and nonzero layer thickness where under- and

overshoots (especially negative ∆p values) are particularly detrimental to numerical stability.

An alternative approach to pure isentropic modeling, advocated by Hsu and Arakawa (1990),

is to compute horizontal mass fluxes using the Takacs (1985) advection scheme. Since this

scheme does not enforce positive definiteness as rigorously as does FCT, Hsu and Arakawa

(1990) had to keep a small amount of mass in coordinate layers that in the aforementioned

models are allowed to become truly massless.

Having assembled a set of numerically resilient tools for handling the intersection of

isentropes with the ground, the modeling community turned its attention to the second

problem in isentropic modeling: the need to accomodate unstable lapse rates associated with

diabatic surface forcing. Since both problems manifest themselves at or near the surface, the

remedies developed to address the coordinate-ground intersection problem also were useful in

alleviating the unstable lapse rate problem. Models general enough to accomodate diabatic

surface forcing [Zhu et al. (1992), Bleck and Benjamin (1993), Zapotocny et al. (1994),

Konor and Arakawa (1997), Johnson and Yuan (1998), Schaak et al. (2004), Benjamin et al.

(2004)] therefore resemble the ones mentioned earlier in their vertical layout. The salient

aspect of all these approaches is that they “hybridize” the isentropic coordinate, i.e., strike

a compromise between Lagrangian and Eulerian vertical grid representation. This is also
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true for the present model and reflects out conviction that, after more than three decades of

isentropic/isopycnic model development, hybridization has emerged as the optimal strategy.

In fact, the focus of isentropic model development in the last 20 years has been entirely on

hybridization details.

3. Brief review of FIM dynamics

The horizontal aspects of the dynamical core of FIM are described in detail elsewhere

(Lee and MacDonald 2009; Lee et al. 2009), but a brief review is needed here to put the

ensuing discussion of the vertical coordinate into context. Readers unfamiliar with equations

in layer and/or generalized vertical coordinate form are referred to Starr (1945), Kasahara

(1974), and Bleck (1978a).

FIM solves a system of layer-integrated, hydrostatically approximated conservation equa-

tions for momentum, mass, thermal energy, and gaseous as well as liquid or frozen water

content. Its so-called “physics” components that model diabatic forcing of the atmosphere

– primarily water phase changes, radiation, vertical turbulent mixing, and surface fluxes –

were imported from the Global Forecast System (GFS) of NOAA’s Centers for Environmen-

tal Prediction (NCEP). Details about their implementation will be the topic of a forthcoming

paper on FIM’s performance in general.

In the following, let s denote the vertical coordinate, v the (Cartesian) horizontal veloc-

ity vector taken as vertically constant within an s layer; ∇s the two-dimensional gradient

operator at s = const; Π = cp(p/p0)
R/cp the Exner function; θ = cpT/Π the virtual potential

temperature; M = gz + Πθ the Montgomery potential; ζ the vorticity (i.e., the vertical
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or k component of the velocity curl vector); θ̇ the net diabatic heating; and F the sum of

frictional forces.

The layer-integrated conservation equations, supplemented by the hydrostatic equation,

are

Momentum conservation:

∂v

∂t
+ (ζ+f)k× v

+
1

∆p

[(

ṡ
∂p

∂s

)

2

(v̂2−v) −

(

ṡ
∂p

∂s

)

1

(v̂1−v)

]

+∇s

(

M+
v2

2

)

− Π∇sθ = F. (3)

Here, indices 1 and 2 denote the upper and lower interface of a coordinate layer, and ∆p =

p2−p1. The vertical advection terms (those involving ṡ) make reference to interface velocity

values denoted here by v̂. Since v is discontinuous at interfaces, the definition of v̂ is to

some extent arbitrary and in practice depends on the chosen vertical advection scheme.

Mass conservation:

∂∆p

∂t
+ ∇s · (v∆p) +

(

ṡ
∂p

∂s

)

2

−

(

ṡ
∂p

∂s

)

1

= 0. (4)

Thermal energy conservation:

∂(θ∆p)

∂t
+ ∇s · (θv∆p) +

(

ṡ
∂p

∂s
θ̂

)

2

−

(

ṡ
∂p

∂s
θ̂

)

1

= θ̇∆p. (5)

As before, the caret in (5) denotes interface values needed in the vertical transport terms.

The method by which they are constructed (upstream, centered,...) determines properties

such as monotonicity and diffusiveness of vertical advection in the model.

Equations for other mass field tracers (moisture etc.) have the same form as (5).
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Hydrostatic Equation:

∂M

∂θ
= Π. (6)

Given the possibility of large temporal changes in vertical grid spacing, much attention is

paid in FIM to conservation of integral properties, i.e., to the elimination of spurious internal

sources and sinks for mass and tracer amounts. Solving tracer transport equations in flux

form, as indicated in (5), is one obvious requirement to account for leading-order changes

in ∆p. (Advective forms are acceptable as long as they are obtained by subtracting from

the tracer flux equation the mass continuity equation multiplied by the tracer.) In addition,

the various terms in the prognostic equations associated, respectively, with lateral transport,

diabatic forcing, vertical grid maintenance, and vertical transport must be evaluated in FIM

sequentially for the sake of maintaining a simple and easily understood framework for global

conservation.

The specific sequence of operations to advance the model state by one time step, closely

following that in the adaptive-coordinate ocean model HYCOM (Bleck 2002), is as follows.

i. The variables u, v, ∆p, q (where q summarily refers to mass field tracers such as θ,

humidity, liquid water content, etc.) are updated disregarding all source and vertical

transport terms. Layer interfaces are treated as impermeable during this step.

ii. Changes to u, v, q due to model physics are calculated. The physics processes act on

the transitional state which the model is left in after completing step (i). The vertical

grid remains frozen during step (ii).

iii. The ∆p field resulting from step (i) is modified, where appropriate, by the vertical grid

generator described in detail below. We will refer to this as the regridding step.
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iv. Vertical transport terms necessitated by changes made to ∆p in step (iii) are evaluated,

and their effect is added to the u, v, q field obtained in step (ii). This is the so-called

remapping step.

In the special case of zero physical forcing and no action by the grid generator, the

transitional model state reached in step (i) becomes the final one.

A few remarks are in order concerning the retrieval of θ from the values θ∆p and ∆p

obtained in step (i) by solving the horizontal transport portions of (5) and (4). The proce-

dure is potentially ill-conditioned in FIM because ∆p is not bounded away from zero. To

avoid creating nonphysical θ values, we require the ratio (θ∆p)/∆p to remain within the

range spanned by the old θ values at and near the point in question. While this introduces

an element of nonconservation into the transport process, the problem is largely academic

because it only occurs where mass flux divergence removes a significant portion, but not

all, of the mass from a grid cell. A number of “engineering” fixes are available, such as

distributing among neighboring cells the θ amount gained or lost by the clipping process.

In present FIM applications, this amount has been found to be too small (in the integrated

sense) to warrant corrective action.

4. The ALE coordinate

FIM belongs to a category of circulation models referred to as layer models, meaning that

vertical spacing of grid points is governed, to varying degrees, by converging or diverging

horizontal mass fluxes. Since the prognostic equations resemble the shallow-water equations
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– even in the sense that variables carried within individual layers are for many intents and

purposes treated as vertically constant –, layer models are also referred to as stacked shallow-

water models.

The hybrid grid in FIM resembles that of RUC (Benjamin et al. 2004; Bleck and Benjamin

1993), but vertical staggering of variables is different because, while RUC conserves mass, it

does not rigorously conserve other mass field constituents. In RUC, θ is carried on interfaces

as in the Charney-Phillips grid (Arakawa and Moorthi 1988). This staggering convention,

which is also followed in the Konor and Arakawa (1997) model, makes restoration of θ to its

prescribed coordinate value (see below) somewhat easier in RUC than in FIM which uses

Lorenz type staggering (Arakawa and Moorthi 1988). FIM staggering replicates the layer

treatment in the hybrid-isopycnic ocean model HYCOM (Bleck 2002) where only pressure

and geopotential are carried on interfaces while all other variables, including tracers and

Montgomery potential, are defined in layers.

The vertical coordinate in FIM is designed around the idea that coordinate layers conform

to isentropic layers except in locations where these intersect the earth’s surface. There, layers

are locally redefined as terrain-following (σ coordinate) layers. An individual coordinate layer

can be isentropic in one geographic region and terrain-following in another.

The hybridization concept employed here and in RUC differs from hybrid schemes de-

veloped elsewhere (Bleck 1978b; Pierce et al. 1991; Zapotocny et al. 1991, 1994; Konor and

Arakawa 1997; Johnson and Yuan 1998; Webster et al. 1999) in that it relies on locally man-

dated adjustments of vertical grid spacing rather than on a fixed formula typically consisting

of a weighted average of two or more traditional coordinate choices. The vertical coordinate

in FIM is best described as Arbitrary Lagrangian-Eulerian (Hirt et al. 1974), but we have
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added a mechanism for keeping coordinate layers aligned with their designated target isen-

tropes over time when- and wherever this does not conflict with minimum layer thickness

constraints. The original ALE scheme (loc.cit.) only concerned itself with the maintenance

of nonzero grid spacing in Lagrangian coordinate simulations. Coordinate “maintenance” in

the sense of keeping coordinate surfaces aligned with iso-surfaces of some quasi-conservative

physical property is essential if an ALE-type circulation model is to be used in long-range

weather or climate simulation.

While the flexibility of coordinate placement in ALE-type schemes is disconcerting to

some users because grid point location in model space cannot be expressed in terms of an

analytic formula, the scheme excels in maximizing the size of the purely isentropic subdo-

main. This follows from the scheme’s ability to set the height where the σ coordinate gives

way to the θ coordinate in each geographic location separately, i.e., unencumbered by global

considerations. Thus, while the lowest purely isentropic coordinate surface in schemes D

of Bleck (1978b) and Zapotocny et al. (1994) in a global model must be selected with the

highest summertime temperature over the Himalayas in mind, the ALE approach contains

no such restrictions. Furthermore, the problem of coordinate surface intertwining due to

inappropriately chosen coordinate blending coefficients (Zhu et al. 1992) does not arise in

an ALE scheme.

FIM manages the vertical grid structure as follows. If a given layer is “on target” (mean-

ing that θ matches the target potential temperature assigned to this layer) and if, in addition,

the two-dimensional shallow-water continuity equation (2) [which is eq. (4) without the ṡ

terms] yields a layer thickness ∆p that does not fall below a predetermined minimum ∆pmin,

the ∆p value obtained from (2) is accepted. In other words, FIM sets ṡ = 0 in this case,
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meaning that it treats the interfaces above and below the layer in question as material. If

one of the above conditions is not met, the grid generator (see following section) takes over

and changes ∂∆p/∂t in a way that either maintains minimum thickness or, if the layer has

become separated from its target potential temperature, moves it closer to it. In these sit-

uations, the selected ∆p tendency is inserted into the full continuity equation (4) which at

this point becomes a diagnostic equation for the interlayer mass fluxes ṡ∂p/∂s. The latter

are used to vertically advect momentum and other variables.

The above process is complicated by the need to include conditions in at least two adjacent

layers when deciding on the value of ṡ∂p/∂s on a given interface. However, as long as

∆pmin > 0 is imposed only on layers at the bottom or top of the column, the test for

nonzero ṡ∂p/∂s can be carried out recursively by a single sweep up or down the column, i.e.,

does not require iteration. In this narrow sense, grid maintenance in the present ALE-like

scheme appears to be slightly simpler than that described in Sec. 3f of Konor and Arakawa

(1997) which requires iterations.

The process desacribed above can be summarized as follows. All hydrostatic models

infer the vertical component of motion from the vertically integrated horizontal mass flux

divergence. The grid generator in an ALE-type model divides this material vertical motion

into two components: vertical motion of the coordinate surface and vertical air motion
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. (7)

The decision whether to accept the solution of (2) – that is, whether to balance the right-

hand side of (7) by only the first term or by some combination of both terms on the left – is

made by the grid generator at each gid point and each time step individually. The FIM grid

generator actually performs both this task and the one listed earlier as step (iv): it carries

out the vertical remapping of all prognostic variables to the modified grid. As noted before,

remapping is formally equivalent to vertical advection because it is driven by nonzero values

of ṡ. However, since vertical displacement of atmospheric constituents due to actual air

motion is already accounted for in the heaving and slumping of coordinate layers in step (i),

vertical advection via the ṡ terms in the prognostic equations is best viewed as a secondary

property redistribution necessitated by coordinate surfaces migrating through resting air.

With the atmosphere conceptually “frozen” in time during this redistribution, remapping

should conserve certain integral properties such as column integrals of momentum, thermal

energy, etc.

Turbulent vertical mixing is typically parameterized in large-scale atmospheric models

by solving a vertical diffusion equation with an eddy diffusivity coefficient designed to in-

corporate the effects of stratification, wind shear, etc. In an isentropic framework, one of

the diffused quantities is an independent variable, namely, the vertical coordinate θ. The
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approach taken in FIM to deal with this peculiarity of isentropic modeling is described in

Appendix A. The scheme is primarily employed as a safeguard against layer collapse during

frontogenesis. One may view it as a rudimentary attempt at qualitatively parameterizing

the effect of clear-air turbulence.

5. The Vertical Grid Generator

a. Background

Owing to differences in the vertical staggering of variables, not all schemes existing today

for maintaining the vertical grid structure in ALE-type hybrid-isentropic layer models are

interchangeable. The scheme developed for RUC (Bleck and Benjamin 1993; Benjamin et al.

2004) in particular cannot be used directly in FIM. Instead, the technology suitable for the

staggered FIM grid had to be imported from the ocean model HYCOM.

The first-generation HYCOM grid generator, whose design principles are described in

detail in Bleck (2002) but date back to Bleck and Boudra (1981), has been modified and

tuned over the years to address grid degeneracies that came to light as the range of ap-

plications of HYCOM grew. This tuning has added branches to the decision tree in the

original algorithm, creating a situation where the underlying logic is no longer transparent

to the user. Complexity in the grid generator discourages experimentation and adaptation

of HYCOM/FIM to special modeling tasks, and hence should be avoided.

The algorithm described below represents an attempt to get “back to basics” when mov-

ing layer interfaces for the sake of maximizing the part of the atmosphere represented by
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isentropic layers while at the same time subjecting layers to minimum-thickness constraints.

In the first-generation grid generator, each grid point is inspected and adjusted recursively

in light of its distance to grid points above and below, using a variety of semi-empirical crite-

ria. The algorithm proposed here is more straightforward in that it begins by transforming

a given hybrid stairstep θ profile into a purely isentropic one, i.e., into a stairstep profile

whose θ levels are prescribed beforehand (step 1 below). Depending on the stratification and

θ range in the original profile, this process can produce massless (zero-thickness) layers at

the top and bottom of the column. Massless layers that occur at the ground are subsequently

inflated to a prescribed minimum thickness (step 2 below).

Differences between the resulting hybridized layer interface pressures and those of the

input profile imply mass exchange among layers. Tracers and momentum must then be

exchanged between layers as well (step 3 below). Any one of the standard conservative

advection schemes can be used for this task.

b. Step 1: Transformation of non-isentropic stairstep θ profiles to isentropic coordinates

Let θin(p) be a piecewise constant (“stairstep”) vertical profile of θ. Both the step width

∆θin and the step height ∆p can vary from step to step. Our task is to transform θin(p) into

another stairstep profile differing from the original one in that the location of the “risers”

on the θ axis is prescribed. Ideally, the transformation should be accomplished without

perturbing the potential/internal energy of the column. Another quantity worth preserving

is the geopotential height of the column, because a transformation that changes the column

height is likely to set off external gravity waves. In the following we will adopt the height
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conservation constraint which is done by switching from p to Π as vertical coordinate (see

Section e below).

Let θk (k = 1, ..., n, θk+1 > θk, k increasing upward) mark the points on the θ axis where

we want the new risers to be placed. These points represent the desired coordinate values

for the isentropic model domain while θin(Π) represents the model state at the completion

of step (ii) above. We require that the θk values span the θ range of the input profile,

θ1 ≤ θin(Π) ≤ θn for all Π (8)

and that the input profile be monotonic.

As shown in Appendix D of Bleck (2002), the interfaces in the transformed profile are

given by

Πk+1/2 =
1

θk+1 − θk

∫ θk+1

θk

Πin(θ) dθ (k=1,...,n-1) (9)

where Πin(θ) is the inverse of θin(Π).

If condition (8) is violated, evaluation of (9) is postponed until the offending input layer is

brought into compliance by “diluting” it with mass from adjacent layers. Persistent heating

at the model top, for example, is thereby transformed into a gradual thickening of the

uppermost coordinate layer.

The transformation of an arbitrary profile θin(Π) into a stairstep curve with risers at

prescribed values θk is illustrated in Fig. 1. To make a clear visual impression of the grid

generator’s action, we have chosen an input profile (thin solid curve) that bears little re-

semblance to the output profile (dashed). Such large differences only occur during model

initialization when the grid generator is employed to transform GFS temperature profiles

into hybrid-isentropic space.
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FIM initialization is outside the scope of the present article. Nevertheless, an input profile

chosen from a set of actual GFS-supplied input profiles provides a welcome opportunity to

illustrate not only the action of the grid generator but also an important step in the model

initialization procedure. Note that the 10K spacing of the θk values in Fig. 1 is far coarser

than the resolution actually used in FIM.

c. Step 2: Enforcement of layer thickness constraints

Suppose the prescribed potential temperature values θ1, θ2, .... in the output profile cover

a wide enough range to yield θk < θin for some k > 1. In this case, (9) will yield Π1/2 =

Π3/2 = ... = Πk+1/2, i.e., layers 1, ..., k in the transformed profile will be massless. Likewise,

if θin < θk for some k < n, layers k+1, ..., n will be rendered massless (Πk+1/2 = ... = Πn+1/2).

The strategy in FIM is to accept massless layers aloft, but to always inflate massless

layers at the bottom of the grid column. Layer inflation rules can be as simple as specify-

ing a constant minimum thickness ∆Π0. In this case the set of isentropic interface values

Πk+1/2 obtained from (9), to be identified here as Π̂k+1/2 to distinguish them from the final

“hybridized” values, are recursively subjected to the constraint

Πk+1/2 = min(Π̂k+1/2, Πk−1/2 − ∆Π0) (k=1,2,...). (10)

Note that ∆Π0 can easily be made layer- or latitude-dependent or scaled by terrain height.

Additional refinements of the hybridization scheme are described in Appendix B.
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d. Step 3: Vertical advection

The regridding process described above must be followed by a remapping step in which

model variables are advected vertically in response to changes in interface pressure. Bor-

rowing from HYCOM, vertical advection of momentum and tracers is currently handled by

either the piecewise linear or the piecewise parabolic method (PLM, PPM) (van Leer 1974;

Colella and Woodward 1984). Due to the potential presence of massless or near-massless lay-

ers, fluid is permitted to cross more than one interface during a given time step. All variables

mentioned are remapped in p space to conserve their mass-weighted column integral.

Potential temperature is a special case. The regridding process described earlier yields

a new θ distribution that may be viewed as resulting from upstream or PCM (piecewise

constant) advection in s space. To suppress the numerical diffusivity implied by this low-

order scheme, FIM actually discards the θ field resulting from the regridding exercise and

replaces it by a field vertically advected by the same higher-order scheme that is used for

the other prognostic variables.

There is a price to be paid for inferring the amount of mass transferred between layers

from a piecewise constant θ distribution, as is done in (9), and subsequently using a higher-

order scheme to remap θ. Neither will the slab of air arriving in a layer have the potential

temperature needed to precisely restore that layer to target, nor will the transfer leave θ in

the donor layer unchanged. However, we find that the restoring algorithm allows layers to

lock onto their targets relatively quickly.

It is worth noting that the conservation properties of the regridding/remapping algorithm

are determined during the remapping phase alone. Hence, regridding can be based on Π,
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as shown in (9), or on any other function monotonic in pressure. The vertical coordinate

used during remapping is also at the discretion of the user. FIM presently offers a choice

between (p/p0)
κ and (p/p0)

1+κ (where κ = R/cp) for remapping the θ field. The rationale

for providing these two options is given in the following section.

In Fig. 1, the process of remapping the input profile (thin line) onto the new layer con-

figuration including several inflated bottom layers yields the heavy black curve. This is the

final outcome of the 3-step procedure.

e. Conservation alternatives

It follows from (6) that the height of an air column can be preserved during vertical

remapping by using the Exner function Π as vertical coordinate. Unfortunately, this choice

does not allow us to satisfy another important constraint: conservation of column-integrated

internal energy I =
∫

cvTdp and column-integrated potential energy P =
∫

gρz dz. (In

an ideal gas in hydrostatic balance, internal and potential energy are proportional to one

another, so conservation of one entails conservation of the other.) The incompatibility of

column height conservation with internal/potential energy conservation becomes clear if one

writes P and I in terms of θ and p and compares the resulting expressions

I =
cvp0

g(1 + k)

∫

θ d

(

p

p0

)1+k

(11)

P =
R p0

g(1 + k)

∫

θ d

(

p

p0

)1+k

(12)

(k = R/cp) with the formula for column height,
∫

θdΠ, in which θ is integrated over a

variable proportional to (p/p0)
κ. It is easy to see now that conservation of I and P can
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be achieved during remapping of θ by using (p/p0)
1+k as vertical coordinate, but that this

can only be done at the price of violating the height preservation constraint. The relative

importance of height versus internal/potential energy conservation is hard to assess without

practical tests.

Other options exist. Lin (2004), in his intermittently-Lagrangian vertical coordinate

scheme, chooses to conserve total energy during regridding and to treat layer temperature as

a diagnostic quantity. The reason for giving priority to total energy conservation, as opposed

to internal/potential energy conservation, is that dissipation of kinetic energy acts as a

heat source. Whether vertical regridding is the proper vehicle for modeling such dissipative

processes is a topic inviting further discussion.

f. An illustration

Some design options suitable for an ALE coordinate in atmospheric models are illustrated

in Fig. 2. The figure shows a meridional cross section (latitude increasing to the left) that cuts

across a typical midlatitude jet stream in thermal wind balance with sloping tropospheric

isentropes. Three elements are combined in the figure. Solid lines running across each

panel represent layer interfaces. Shaded contours represent zonal wind speed. Colors filling

alternate spaces between isotachs show potential temperature. The purpose of the coloration

is to indicate where in the domain a given coordinate layer is isentropic. The rendering is

not exact because the columnwise steppy θ field has been converted into a continuous field

and interpolated to p space to simplify plotting.

The first panel in Fig. 2 shows a layer configuration typically seen in pure isentropic
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coordinate models like those of Bleck (1984) and Zhu et al. (1992). Since FIM evaluates

lateral flux terms in (4) and (5) using the Flux Corrected Transport scheme which permits

layer thickness to go to zero (Lee et al. 2009), FIM can actually operate stably in the pure

isentropic mode depicted in panel 1. The rationale for building this capability into FIM was

to remove numerical-stability related constraints on the choice of minimum layer thickness.

Passing the configuration shown in panel 1 of Fig. 2 to the FIM grid generator yields the

configuration shown in the second panel (upper right). As described in detail above, the

grid generator inflates layers that intersect the ground – the ones shown as massless layers

in the first panel – but leaves higher layers unmodified. The shallow layers formed in this

way near the earth’s surface are, of course, no longer isentropic. A configuration similar to

this one but with much higher vertical resolution is used in RUC (Benjamin et al. 2004) and

in FIM. For illustrative purposes, minimum layer thickness ∆pmin in Fig. 2 is set to 30 hPa.

FIM and RUC typically use values in the 2- to 20-hPa range.

The third panel (lower left) illustrates how the ALE coordinate reacts to the presence

of a mountainous feature like the Tibetan Plateau. To keep the mountain from creating

a nonisentropic coordinate cap extending to jet stream levels, ∆pmin is reduced over high

terrain as it would be in a σ coordinate model.

In the fourth panel we give an example of how one could modify the ALE coordinate

to optimize layer spacing at low latitudes where cloud physics parameterization schemes

typically demand more uniform vertical grid spacing than that shown in panel 2. A layer

expansion feature like the one in panel 4 would be particularly desirable in a model that

uses an extremely low ∆pmin for the sake of maximizing isentropic grid representation in the

extratropics. Given the rather large value of 20 hPa currently used by FIM in all but the
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lowest σ layers, refinements of this type are not contemplated at this time.

Because of the continuous rendering of the steppy θ field, the color fields in Fig. 2 do not

accurately reflect θ in each layer, as already mentioned. However, some color irregularities

in regions where interfaces have been pushed up or down by the grid generator are the result

of vertical advection errors.

This brings up an important point. The flexibility of the ALE scheme might compel a

model architect to design a coordinate system that requires interfaces to periodically move

over large distances through the fluid. Such a design, an obvious violation of the “flow-

following” concept, can lead to vertical advection and associated dissipation errors far in

excess of those typically encountered in a fixed grid. One example of an ill-advised ALE

algorithm is to attach a coordinate surface to the top of the planetary boundary layer for the

sake of cleanly separating well-mixed from stratified air layers. Due to the potentially large

difference between day- and nighttime boundary layer heights and the ensuing need to move

large amounts of air back and forth across the pulsating interface, advantages gained by

separating regions of large and small vertical mixing are likely to be lost. The best strategy

is to make coordinate surfaces either truly Lagrangian or, if that is impractical, keep them

fixed in space.

There are situations where not only time- but also space-dependent ∆pmin values of

the kind shown in panel 4 of Fig. 2 must be avoided. Consider, for example, a model in

which the Sadourny (1975) or Arakawa and Lamb (1981) approach is used to formulate

the momentum equations in potential-enstrophy conserving form, with layer thickness ∆p

taking the place of ∂p/∂θ in the potential vorticity expression (ζ + f)(∂p/∂θ)−1. In the

σ coordinate subdomain, lateral variations imposed on ∆p by the grid generator will, in
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this case, introduce bogus lateral potential vorticity gradients which can affect the flow

evolution inappropriately. FIM avoids this pitfall by using vorticity, not potential vorticity,

in (3). HYCOM uses the Sadourny (1975) formulation but makes ∆pmin a function of the

layer index only, effectively replacing potential vorticity by absolute vorticity inside the p

coordinate subdomain.

6. A sensitivity study

Because the focus of this article is on the design of an ALE-type vertical coordinate,

readers might expect to see results of experiments highlighting the performance of the grid

generator. While such experiments have been carried out, and forecast quality has indeed

been found to depend on parameters such as minimum layer thickness, a scientifically mean-

ingful discussion of these experiments will require exploring the fundamental question of

how sensitive today’s cloud physics and boundary layer parameterizations are to deviations

from the vertical resolution provided by conventional NWP models. This question, though

eminently important, is beyond the scope of the present article.

One option would have been to present results gained with a FIM version stripped entirely

of its physics components. However, we argue that the results presented below, which

highlight FIM’s capabilities as a full-fledged global medium-range prediction model, are

more informative than process studies dwelling on coordinate configurations in idealized

adiabatic flow, especially since such experiments, which naturally were carried out during

the early stages of FIM development, did not reveal ALE-related numerical issues.

In light of the above, the material presented below dwells on capabilities of FIM associated
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with its isentropic coordinate, rather than on the particulars of low-level σ-layer packing or

the σ−θ transition.

A displaced fluid parcel that does not experience a buoyancy force driving it back to

its original location is likely to remain in contact with its new surroundings longer than it

otherwise would be. This gives the parcel some extra time to exchange properties with the

surrounding fluid [Montgomery and Spilhaus (1941), p. 281]. Consequently, turbulent mix-

ing in stratified fluids takes place preferentially along surfaces of constant potential buoyancy

(i.e. buoyancy corrected for compressibility effects).

With potential buoyancy and entropy being synonymous (or nearly so) in the atmosphere,

turbulent exchange tends to minimize isentropic gradients of properties such as momentum

(Rossby and Collaborators 1937). Replicating this process in a numerical model is not easy

if coordinate surfaces do not coincide with isentropes. Dispersion errors associated with

horizontal transport in a model tend, over time, to destroy property contrasts on whichever

surfaces the transport is being carried out. Only if the transport equations are solved on

isentropic surfaces can this numerical dispersion error be hidden behind what we may call a

“smokescreen” of naturally occurring mixing. Being able to do this is especially advantageous

in long-term simulations of statistically stationary or slowly varying states that in nature

result from a balance between external forcing, transport, and turbulent mixing.

Note that the above argument refers to numerical errors associated with lateral transport

– that is, errors caused by the dispersive properties of the horizontal advection operator.

Errors arising during evaluation of explicit mixing terms (which FIM is free of) can also be

important. However, these can be reduced – to some extent at least – by aligning the main

axes of the mixing tensor with isentropic surfaces (Redi 1982). An equivalent strategy to
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project the effect of numerical dispersion in the transported field onto isentropic surfaces has

not yet been developed.

The flexibility of the ALE coordinate allows us to shed light on the correctness of the

assertion that numerical accuracy of transport processes benefits from isentropic coordinate

representation. We will do this by changing the vertical coordinate in FIM from hybrid σ−θ

to a more traditional combination of σ and p and will look for at least anecdotal evidence

that simulations based on the first-mentioned coordinate yield more coherent patterns of

dynamically relevant quantities than simulations based on the latter. This work is comple-

mentary to earlier work by, among others, Johnson et al. (1993) and Benjamin et al. (2004),

but sheds light on fluid dynamics phenomena not specifically treated in those studies.

A tracer well suited for this purpose is the vorticity ζ = ∂v/∂x − ∂u/∂y. Even though

ζ is neither explicitly advected in primitive equation models, nor is it rigorously conserved,

the fact that vorticity is composed of spatial derivatives of the velocity field and interacts

with the circulation in a two-way mode makes it a particularly sensitive indicator of forecast

errors. We will focus in the following on the process of tropospheric Rossby wave breaking

(McIntyre and Palmer 1985), also referred to as vortex rollup (Dritschel and Polvani 1992)

or, in synoptic meteorologists’ parlance, cutoff low formation.

Three synoptic cases were analyzed in detail for this article. Space limitations permit us

to present only one of them in detail. Limited results from the other cases will be included

to indicate that trends in forecast accuracy as functions of horizontal resolution and vertical

grid were not unique to the first case.

The vortex rollup process, and the failure of some model versions to simulate it accu-

rately, were found to be depicted most succinctly by the vorticity and geopotential height
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distribution on the 300-hPa isobaric surface. We will therefore confine our attention to 300-

hPa flow patterns and will first focus on forecasts over North America extending 3.5 to 5

days from the initial time of 0000GMT, 19 October 2008. (The other two cases depict vor-

tex rollup events over Europe four weeks later and over the Southern Ocean in late austral

summer.)

A total of eight FIM forecasts were carried out, four using the native FIM coordinate and

four using the σ−p coordinate introduced to the operational GFS in May 2007. The switch

from the former coordinate to the latter is accomplished in FIM by replacing the standard

hybrid-isentropic grid generator by one that simply restores interface pressures to the values

used in the GFS. No other changes are made to the model.

The forecasts within each group of four differ by horizontal grid resolution. As outlined

in Sec.3a of Lee and MacDonald (2009), recursively bisecting the sides of the 20 triangles in

the icosahedron quadruples the number of hexagonal cells on the sphere. In the experiments

reported here, the number of cells ranges from ∼10,000 (referred to as G5 resolution – 5

bisecting steps) to ∼655,000 (G8, 8 bisecting steps). The mesh size is ∼240 km at G5 and

∼30 km at G8 resolution. Since icosahedral surface elements have to be projected outward

onto the enclosing sphere, mesh size varies by approximately 15%.

The figures for case 1 are organized as follows. Results obtained by FIM configured

with its standard hybrid σ−θ coordinate are displayed in the top four panels of Figs. 3-6.

Corresponding results obtained by substituting the hybrid σ−p coordinate for the native

FIM coordinate are shown in the bottom four panels of each figure. As already mentioned,

coordinate values in the σ−p grid are identical to those used by the GFS. Both grids consist

of 64 layers.

27



We begin by showing in Fig. 3 the rollup process as simulated at the highest available

resolution of 30 km (G8). The forecasts clearly depict the universal process by which mixing

in fluids takes place: initally compact fluid elements are continually stretched into long, thin

filaments that create sharp property gradients subsequently eroded by molecular diffusion.

How important explicit simulation of this stretching or stirring process is for climate modeling

is an important open question. There is no doubt, however, that such explicit simulation is

important in NWP because property gradients formed by filamentation often spawn severe

local weather events.

Fig. 3 indicates that the σ−θ forecast carries the filamentation process somewhat farther

than the σ−p forecast. In fact, it may carry it too far. A comparison to observed conditions on

23 October 2008 (not shown here) indicates that FIM, using its native coordinate, actually

over-intensifies the cutoff vortex. Further experimentation will be required to determine

whether omission of explicit subgrid-scale mixing terms in FIM is an occasional detriment

to forecast accuracy.

The next figures depict the rate at which the filamentation and rollup process is degraded

with lower grid resolution. At G7 (60-km) resolution (Fig. 4), the vorticity streamer in the

σ−θ forecast is seen to maintain its integrity, even to the extent that its spiral structure at

120 hrs is better defined in this forecast than in the previous one. Larger changes between

Fig. 3 and Fig. 4 are noticeable in the σ−p forecast, and these changes foreshadow a rather

precipitous decline in filament definition with decreasing grid resolution in σ−p mode. The

300-hPa surface at 120 hrs in the σ−p forecast has risen by 10m as a result of the resolution

change, and the vortex is located too far to the west.

It is worth noting that even in a perfect model simulation, the filament patterns in σ−θ
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and σ−p forecasts would differ because the plotted vorticity is based on winds differentiated

at constant θ in one model version and at constant p in the other. (At 300 hPa, the GFS

coordinate is nearly isobaric while FIM’s hybrid-isentropic coordinate is solidly isentropic.)

The trend suggested by Figs. 3 and 4 continues as mesh size is doubled again, to 120 km

(Fig. 5). At this resolution, the vorticity streamer in the σ−θ forecast loses its distinctive

spiral character, but its forward edge still shows signs of being wrapped around the vortex

at 120 hrs. In the σ−p forecast at 120-km resolution, the vorticity field is devoid of sharp

maxima and the rollup process is greatly weakened. The trough line develops a serious tilt

toward the southwest.

At 240-km spatial resolution (Fig. 6) the σ− θ forecast finally shows signs of serious

degradation, reminiscent of what we saw at higher resolution in the σ−p forecast. Vortex

rollup is no longer taking place, even though the erroneous tilt of the trough line is less

serious in Fig. 6 (top panels) than in the 120 km σ−p forecast (bottom panels of Fig. 5). The

trough in the 240-km σ−p forecast no longer shows signs of amplification during the 84- to

120-hr time frame.

As mentioned, due to space limitations and to avoid being unduly repetitious we will

present material from the other two cases only as needed to amplify the points made above.

G8 forecasts over central Europe extending 5.5 and 6 days out from the starting date

of 0000GMT, 17 November 2008 (Fig. 7) show the by-now familiar differences between the

two FIM versions. The vorticity streamers in the σ−θ forecast look tighter, and while the

speed at which they wrap around the vortex appears to be similar in the two forecasts,

the total amount of vorticity drawn into the vortex – if this can be judged by looking at a

map – apears to be stronger in the σ−θ forecast, explaining the extra deepening at 144 hrs
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compared to the σ−p forecast.

Like in the earlier case, the discrepancy between σ−p and σ−θ forecasts becomes more

pronounced with lower horizontal resolution. We only show results here for the G7 (60 km

mesh size) experiments (Fig. 8). Streamers have virtually disappeared from the σ−p forecast,

and there is only a hint of a cutoff low. The σ−θ forecast fares better. In fact, there is a

striking semblance between the vorticity patterns in the G7 σ−θ forecast and the G8 σ−p

forecast.

Three- and 3.5-day, 300-hPa forecasts at G8 resolution over the Indian Ocean sector of

the Southern Ocean are shown in Fig. 9. The initial time is 0000GMT, 7 February 2009.

This is a late summer case; hence, vorticity contrasts are not as strong as in the other cases.

The color scale has been adjusted to take this into account.

Differences in the large-scale vorticity pattern between σ−p and σ−θ forecasts are minor

at G8 resolution, even though the vorticity filaments appear to be slightly more coherent in

the σ−θ forecast.

The weakening of the wave-breaking process with decreasing horizontal resolution is not

as pronounced as in the previous cases, but the by now familiar pattern of degradation can

still be detected. Despite the relatively low resolutution of 120 km in the G6 forecasts shown

in Fig. 9, the remnants of a vorticity spiral are still very noticeable at 72 hrs in the σ−θ

forecast (upper left panel) whereas there is nothing left of it in the σ−p forecast. As in the

November 2008 case, the “amount” of vorticity trapped in the vortex appears to be higher

in the σ−θ forecast, leading to a slightly stronger cutoff vortex.

An alternate view of the difference between the two forecasts is provided in Fig. 11. The

cross sections shown correspond in time and grid resolution to the fields in Fig. 10. The
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sections slice through the vortex in zonal direction, thereby creating a butterfly pattern

in the velocity field. The jet in the σ−θ forecast is the stronger one, by roughly 5ms−1

on the upstream side and 10ms−1 on the downstream side. The difference in strength is

conceptually consistent with the fact that the doming of isentropes in the vortex center

reduces velocity gradients along coordinate surfaces on the cyclonic side of the jet, thereby

lessening numerical dissipation of cyclonic vorticity below jet stream level.

7. Discussion

Evidence we have accumulated so far, though still largely anecdotal, suggests that FIM,

using its native σ−θ coordinate, maintains the integrity of tropospheric vorticity filaments

better with decreasing resolution than the same model using a σ−p coordinate adopted from

NCEP’s Global Forecast System. The evidence is based on three extensively analyzed cases

and on a few more cases analyzed in less detail, all chosen from the 2008/2009 boreal fall

and winter season.

Nevertheless, the reasoning for why different trends in the simulation of Rossby wave

breaking in the two model versions are to be expected is straightforward. As argued earlier,

numericallly induced lateral mixing of fine structures generated by filament stretching is least

detrimental to forecast accuracy in models whose mixing surfaces coincide with iso-surfaces

of potential buoyancy. FIM with its σ−θ grid represents such a model, at least above the

lowest few kilometers of the atmosphere.

One seeming flaw of the above case study is the juxtaposition of two different vorticity

fields – one, ηθ, based on differentiation at constant θ and one, ηp, on differentiation at
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constant p. For this reason, comparison of ηp with ηθ at the same spatial resolution is less

meaningful than a comparison of the resolution dependence of either the ηθ or the ηp field

by itself. We should therefore refrain from making conclusions such as “filament simlation

in the σ−θ model at Gn resolution (where n is a natural number) compares accuracy-wise to

simulation in the σ−p model at resolution Gn+1.” On the other hand, it seems permissible

to conclude that the deterioration of forecast accuracy with decreasing resolution is more

rapid in the σ−p simulations than the σ−θ simulations.

Even if quantitative information cannot be drawn from it, the exercise of plotting ηθ on p

surfaces and comparing the resulting distribution with ηp plotted on the same surfaces is still

informative. It illustrates the level of detail in a dynamically relevant tracer field that in an

isentropic coordinate model, by virtue of coordinate surface orientation, is largely shielded

from nonphysical dissipation. The ηp field in the FIM version featuring a σ−p coordinate,

on the other hand, directly feels the impact of numerical dissipation and deteriorates with

time accordingly. It remains to be seen, of course, whether some degree of deterioration

might not be realistic. In other words, the question will have to be addressed whether the

FIM equations should retain their present frictionless form or be amended by explicit mixing

terms.

8. Closing remarks

Material has been presented supporting the notion that “flow-following” or quasi-Lagran-

gian vertical coordinates are a viable alternative to the Eulerian coordinates commonly used

in atmospheric circulation modeling. This point, of course, has been made before by members
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of the Wisconsin and UCLA schools [Johnson (2000), Arakawa (2000), Randall et al. (2000),

among others]. The distinguishing feature of the present effort is that a quasi-isentropic

coordinate model is being used on a routine basis for real-time, medium-range global weather

prediction. Comparing FIM with the other two hybrid-isentropic models routinely used for

weather prediction today, FIM differs from RUC (Benjamin et al. 2004) primarily in the use

of an icosahedral global grid and from the University of Wisconsin global model (Schaak

et al. 2004) in the use of an ALE coordinate.

Not all components of FIM are new. Physics parameterization codes were made available

by the group responsible for the Global Forecast System at NCEP; FIM development efforts

have greatly benefitted from this collaboration. Likewise, the global fields used to initialize

FIM are imported directly from NCEP.

This said, FIM is unique in having combined two novel approaches to numerical weather

prediction: (1) icosahedron- and finite volume-based horizontal discretization and (2) an

entropy-based vertical coordinate. The present article domuments the latter aspect in de-

tail. In addition, material is presented suggesting that numerical diffusion attributed to the

dispersive effects of the horizontal transport operators can be rendered less destructive by

solving the dynamic equations in an isentropic coordinate system. The question of whether

this by itself leads to improved forecast accuracy has not been explored in this article but

will be the subject of future work.
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APPENDIX A

Turbulent vertical mixing

The following is a simplified version of a numerical scheme developed by McDougall and

Dewar (1998) for carrying out vertical mixing in fluid models whose vertical coordinate is

a function of the diffused variable(s). The authors deal with the specific problem of mixing

temperature and salinity in ocean models whose vertical coordinate is potential density (a

function of both temperature and salinity), constrained to remain constant in each coordinate

layer during mixing.

Here we address the simpler problem of solving the diffusion equation in an atmospheric

column where there is only one diffused variable (potential temperature θ) doing double duty

as vertical coordinate. The only variable capable of capturing the effects of thermal diffusion

in this case is the thickness of coordinate layers.

The equations expressing conservation of mass and heat in a column, basically one-

dimensional versions of the equations listed in the beginning, are

∂

∂t

(

∂z

∂s

)

s

+
∂

∂s

(

ṡ
∂z

∂s

)

= 0. (A1)

(

∂θ

∂t

)

s

+

(

ṡ
∂z

∂s

)

∂θ

∂z
= −

∂Fθ

∂z
(A2)

The turbulent heat flux Fθ = w′θ′ is usually parameterized as Fθ = −K∂θ/∂z where θ is the

resolved-scale potential temperature and K is a thermal diffusivity coefficient.

The flux form of (A2), obtained by combining (A1) and (A2), is

∂

∂t

(

θ
∂z

∂s

)

+
∂

∂s

(

ṡ
∂z

∂s
θ

)

= −
∂Fθ

∂s
. (A3)
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The task at hand is to discretize the above equations for use in a model framework where

stratification is represented by a piecewise constant, stairstep θ profile. The discretization

will be done by formally integrating the equations over individual stairsteps.

If θ is to remain constant in each layer during the mixing process, Fθ must be vertically

constant in each layer. If this were not the case, integrating (A2) over an individual layer

would yield a nonzero right-hand side. Of the two terms on the left, the second one integrates

to zero since ∂θ/∂z = 0 inside the layer. (The vertical mass flux (ṡ∂z/∂s) remains finite.)

Hence, a nonzero r.h.s. implies a nonzero tendency term ∂θ/∂t which clashes with the stated

requirement.

We conclude: for diffusion to leave a mark on the profile under the constraint Fθ = const

in individual layers, Fθ must be allowed to vary from layer to layer. The implied infinite heat

flux divergence at layer interfaces is consistent with the notion that air crossing an interface

undergoes an instantaneous change in θ.

A simple centered finite-difference expression for the heat flux in layer n is

F n
θ =

Kn

2

θn+1 − θn−1

zn+1/2 − zn−1/2
(A4)

where fractional superscripts indicate quantities defined on interfaces.

The central task is to determine the mass flux across layer interfaces, (ṡ∂z/∂s). For this

we integrate (A3) over an s interval representing an infinitesimal slab bracketing a layer

interface. Since the tendency term drops out as ∂z approaches zero and the mass flux

(ṡ∂z/∂s) is continuous in the vertical, we obtain in the limit of zero slab thickness

(

ṡ
∂z

∂s

)n+1/2

=
F n+1

θ − F n
θ

θn+1 − θn
. (A5)
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Expressions (A4) and (A5) encompass the sought-after solution to the problem of diffus-

ing heat in a stairstep θ profile while maintaining θ in individual layers. Note that, in the

absence of externally imposed heat fluxes, the column integral
∫

θdz is conserved regardless

of the physical and numerical approximations made in evaluating the heat flux (A4).

The heat flux as approximated by (A4) becomes infinite in massless layers. To avoid

division by zero, the denominator in (A4) must therefore be bounded away from zero. The

parameter representing minimum layer thickness, together with K and the time step used

in solving (A3), can be tuned to concentrate the effect of vertical diffusion almost entirely

on very thin layers. We use the scheme in this mode as an alternative to the grid generator

to avoid generating zero-thickness layers in the isentropic subdomain that may result from

strongly layer-dependent diabatic forcing. The advantage of the present scheme over the

grid generator is that it does not produce local deviations from target θ. Suitable parameter

values are: 1m2 for the product of time step and mixing coefficient, and 2 × 10−3m for the

minimum thickness.

Ideally, vertical mixing should conserve the total heat content of the column,
∫

cvTdp.

From (11) we note that in order to conserve total heat, the variable z in (A1) – (A5) must

be replaced by a variable proportional to p1+k. No other changes are required in the solution

procedure, except that the mixing coefficient K in (A4) must be rendered dimensionally

compatible with the new vertical coordinate.

In a similar vein, preservation of the total height
∫

θdΠ of the column during mixing can

be achieved by using a variable proportional to pk in place of z. Note that height preservation

is incompatible with heat conservation.
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APPENDIX B

Details of minimum thickness enforcement

It is advisable to smooth out large lateral variations in layer thickness that typically

occur where a hybridized coordinate layer transitions from the fixed-depth to the isentropic

subdomain. These variations are created when, for a given k, the 2nd argument in the

minimum function of (10) is chosen in one grid column, while the 1st argument is chosen in a

neighboring column. One way to smooth out the transition, short of exchanging information

among neighboring grid columns, is to increase layer thickness in situations where the two

arguments are of similar magnitude. This is the purpose of the “cushion” function originally

introduced into hybrid-coordinate ocean modeling by Bleck and Boudra (1981) and later

adapted for atmospheric use by Bleck and Benjamin (1993). Use of the cushion function

entails replacing (10) by

Πk+1/2 = min(Π̂k+1/2, Πk−1/2

−cushn[Π̂k−1/2 − Πk+1/2, ∆Π0]). (B1)

In the two extreme cases where Π̂k−1/2 − Πk+1/2 is either large negative or large positive

compared to ∆Π0, the cushion function is designed to replicate the functionality of (10). In

other words, cushn(a, b) returns a if a >> b, and it returns b if −a >> b (b > 0). Between

the two extremes, cushn varies smoothly, returning values as high as 2 max(a, b). In many

cases, this inflates a layer if its potential temperature is close to target, thereby softening the

lateral interface height contrast between locations where the underlying layer is isentropic

and where it is not.
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If more effective interface smoothing in the σ-θ transition region is deemed nececessary,

a sideways-looking smoothing algorithm may be required.

At the time of this writing, the minimum thickness value ∆Π0 is set as follows.

i. A default value ∆Π0(k) is specified for each layer k. Typical values (stated here in

pressure units for easier reference) are 3 hPa in the bottom layer, gradually increasing

to 10 or 20 hPa in layers above.

ii. In an attempt to mimic the vertical spacing of conventional σ coordinate layers, all

∆Π0(k) are multiplied by the factor (psrf − ptop)/(1000 hPa − ptop) where psrf is the

surface pressure and ptop is the pressure level (400 hPa or smaller) where coordinate

surfaces in a conventional σ coordinate model cease to be terrain-following.

iii. Starting in the lowest layer and moving up the column, Πk+1/2 is compared against

the lesser of (B1) and Π1/2 −
∑k

n=1
∆Π0(n). If it exceeds the minimum of these two

values, it is replaced by that minimum. This is done recursively, i.e., altered interface

values affect the inflation test in layers above.

iv. The lowest layer not in need of inflation is labeled kσθ; it marks the transition from

the σ to the θ subdomain.

v. The upper interface of layer kσθ stays fixed by definition, but very thin isentropic

layers qualifying for inflation based on (B1) can occur higher up in the atmosphere.

To keep these from unnecessarily being inflated, the value ∆Π0(k) is reduced in layers

kσθ+1, ..., kσθ+4 by the factors 0.4, 0.2, 0.1, and 0.05, respectively. The factor 0.05 is

also used in layers k > kσθ+4.
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Discretization of a continuous profile θ(Π) in terms of a stairstep profile is not unique,

because stairsteps can be broken into smaller steps or combined into bigger ones without

violating any continuity or conservation principle. This ambiguity can lead to computational

modes in the vertical layer structure, leading to the gradual disappearance of, say, odd-

numbered layers accompanied by a thickening of even-numbered ones. Initial experiments

with FIM indeed revealed a propensity for amplifying this mode. To suppress it, a special

algorithm has been added to the grid generator.

The algorithm scans each grid column for sequences of 5 ∆Π values, numbered ∆Π1, ..., ∆Π5,

that satisfy the following three conditions:

∆Π1 < ∆Π2

∆Π5 < ∆Π4

∆Π3 < min(∆Π2, ∆Π4).

If all three conditions are met, layer 3 is inflated by drawing mass from both layers 2 and 4

such that (a) the column integral of θ is conserved and (b) ∆Πnew
3 = min(∆Πnew

2 , ∆Πnew
4 ).

Requirement (a) leads to the constraint

∆Π2 − ∆Πnew
2

∆Π4 − ∆Πnew
4

=
θ4 − θ3

θ3 − θ2

which may put a limit on the mass transfer stipulated by (b). The resulting interface

displacements are added to those associated with the primary regridding process.

Suppression of the layer thickness computational mode improves the performance of

the column physics parameterization scheme which has been found to be sensitive to large

variations in layer thickness.
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Fig. 1. Example of vertical grid generation in FIM. Abscissa: potential temperature (K).
Ordinate: Exner function. Thin solid line: input profile θin(Π), drawn here as a continuous
rather than stairstep curve for legibility. Dashed: transformed, purely isentropic profile
with θk values spaced 10K apart. Thick solid curve: same profile after inflation of massless
bottom layers.
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Fig. 2. Vertical-meridional cross section illustrating the functionality of the ALE coordinate
in FIM. Solid lines: layer interfaces. Shaded contours: isotachs (m s−1). Color scheme:
potential temperature (K). Ordinate: pressure (hPa). Horizontal extent: 5000 km
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Fig. 3. 84-, 96-, 108-, and 120-hr forecasts of geopotential height (m) and vorticity (10−5s−1)
at 300 hPa. Initial time: 0000GMT, 19 Oct. 2008. Top 4 panels: forecasts based on native
σ−θ grid. Bottom 4 panels: FIM forecasts using GFS σ−p grid. Horizontal resolution: G8
(∼30 km).
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Fig. 4. As in Fig. 3 but for G7 (∼60-km) resolution.

52



Fig. 5. As in Fig. 3 but for G6 (∼120-km) resolution.
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Fig. 6. As in Fig. 3 but for G5 (∼240-km) resolution.
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Fig. 7. 132-, and 144-hr forecasts of geopotential height (m) and vorticity (10−5s−1) at
300 hPa. Initial time: 0000GMT, 17 Nov. 2008. Top: forecasts based on native σ−θ grid .
Bottom: FIM forecasts using GFS σ−p grid. Horizontal resolution: G8 (∼30 km).
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Fig. 8. As in Fig.7 but for G7 resolution (∼60 km).
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Fig. 9. 72-, and 84-hr forecasts of geopotential height (m) and vorticity (10−5s−1) at 300 hPa.
Initial time: 0000GMT, 7 Feb. 2009. Top: forecasts based on native σ−θ grid . Bottom:
FIM forecasts using GFS σ−p grid. Horizontal resolution: G8 (∼30 km). Maps are cropped
to show pieces of Madagascar and Australia for orientation.
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Fig. 10. As in Fig.9 but for G6 resolution (∼120 km).
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Fig. 11. Zonal cross sections at 50S, 50E – 120E, extracted from 72-hr G6 forecasts based
on σ−θ coordinate with 5-hPa minimum layer thickness (left) and GFS σ−p coordinate
(right). Features shown in the sections are explained in Fig. 2.
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